Skip to main content

Advertisement

Log in

Gas Pressure Dependence of the Heat Transport in Porous Solids with Pores Smaller than 10 μm

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

To elucidate the gaseous heat transfer in open porous materials with pore sizes below 10 μm, an experimental setup for hot-wire measurements at high gas pressures was designed and tested. The samples investigated were organic, resorcinol–formaldehyde-based aerogels with average pore sizes of about 600 nm and 7μm. The range in gas pressure covered was 10 Pa to 10 MPa. To avoid effects due to mass transport along the inner surface of the porous backbone of the samples, He and Ar, i.e., gases with very low interaction with the sample surface at ambient temperature, were chosen. The study reveals a significant contribution of coupling effects to the thermal transport in nanoporous media. A model has been developed that qualitatively describes the observed gas pressure dependence of the heat transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reichenauer G., Ebert H.-P.: The Nanotech J. 01.08, 17 (2008)

    Google Scholar 

  2. Zeng S.Q., Hunt A., Greif R.: J. Non-Cryst. Solids 186, 264 (1995)

    Article  ADS  Google Scholar 

  3. Reichenauer G., Heinemann U., Ebert H.-P.: Colloid Surf. A 300, 204 (2007)

    Article  Google Scholar 

  4. G. Reichenauer, Aerogels. in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., New York, 2008)

  5. Fricke J.: High Temp.-High Press. 25, 379 (1993)

    Google Scholar 

  6. Kaganer M.G.: Thermal Insulation in Cryogenic Engineering. IPST Press, Jerusalem, Israel (1969)

    Google Scholar 

  7. Lu X., Wang P., Arduini-Schuster M.C., Kuhn J., Büttner D., Nilsson O., Heinemann U., Fricke J.: J. Non-Cryst. Solids 145, 207 (1992)

    Article  ADS  Google Scholar 

  8. Pekala R.W., Alviso C.T., Lu X., Gross J., Fricke J.: J. Non-Cryst. Solids 188, 34 (1995)

    Article  ADS  Google Scholar 

  9. Zehner P., Schlünder E.U.: Chem. Ing. Tech. 44, 1303 (1972)

    Article  Google Scholar 

  10. Kuchling H.: Taschenbuch der Physik. Fachbuchverlag Leipzig, München, Wien (1999)

    Google Scholar 

  11. Stalhane B., Pyk S.: Teknisk Tidskrift 61, 389 (1931)

    Google Scholar 

  12. Ebert H.-P., Bock V., Nilsson O., Fricke J.: High Temp.-High Press. 25, 391 (1993)

    Google Scholar 

  13. Umrath W.: Fundamentals of Vacuum Technology. Leybold AG, Cologne (1998)

    Google Scholar 

  14. Reiss H.: VDI-Wärmeatlas. Springer-Verlag, Berlin, Heidelberg (1997)

    Google Scholar 

  15. Kestin J., Paul R., Clifford A.A., Wakeham W.A.: Physica 100 A, 349 (1980)

    ADS  Google Scholar 

  16. Bailey B.J., Kellner K.: Physica 39, 444 (1968)

    Article  ADS  Google Scholar 

  17. R.W. Pekala, F.M. Kong, A synthetic route to organic aerogels—mechanism, structure and properties. in Proceedings of 2nd Int. Symp. on Aerogels (1989), pp. C4-33–C4-40

  18. Wiener M., Reichenauer G., Scherb T., Fricke J.: J. Non-Cryst. Solids 350, 126 (2004)

    Article  ADS  Google Scholar 

  19. Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T.: Pure Appl. Chem. 57, 603 (1985)

    Article  Google Scholar 

  20. Reichenauer G., Stumpf C., Fricke J.: J. Non-Cryst. Solids 186, 334 (1995)

    Article  ADS  Google Scholar 

  21. Lu X., Arduini-Schuster M.C., Kuhn J., Nilsson O., Fricke J., Pekala W.: Science 255, 971 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Swimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swimm, K., Reichenauer, G., Vidi, S. et al. Gas Pressure Dependence of the Heat Transport in Porous Solids with Pores Smaller than 10 μm. Int J Thermophys 30, 1329–1342 (2009). https://doi.org/10.1007/s10765-009-0617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0617-z

Keywords

Navigation