Skip to main content
Log in

Characterization of adsorbed arsenate on amorphous and nano crystalline MgFe-layered double hydroxides

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This article investigated sorption of toxic and carcinogenic arsenate (AsO4 3−) ions on positively charged surface of amorphous and nano crystalline MgFe-layered double hydroxides (LDHs). Based on Brunauer–Emmett–Teller (BET) and Transmission Electron Microscopy (TEM), average size, and specific surface area of nano crystalline MgFe-LDHs, which was about range of about 50–200 nm and 90.2 m2/g, was lower and higher when compared to them of amorphous MgFe-LDHs, respectively. In addition, X-ray diffraction (XRD) peak and point of zero charge (PZC) of crystalline MgFe-LDHs was higher intensity and same, respectively, when compared to that of nano crystalline FeMg-LDHs. Adsorption rate of arsenate on amorphous MgFe-LDHs was a little faster when compared to that of nano crystalline MgFe-LDHs. In addition, as pH decreased, adsorption amount of arsenate on amorphous MgFe-LDHs increased significantly when compared to that of nano crystalline MgFe-LDHs. These results indicate that mechanism of arsenate in two materials was significantly different. We investigate sorption characteristic at pH 5, based on XRD and Fourier-transformed infrared (FTIR). In amorphous MgFe-LDHs, ferric arsenate precipitate was formed on surface of amorphous MgFe-LDHs and constituted the predominant surface arsenate. However, in nano crystalline MgFe-LDHs, arsenate was dominantly sorbed as a “non-surface-complexed” As–O bond on surface and anion exchange in interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acro MD, Martin GC, Rives V (2001) FTIR study of isopropanol reactivity on calcined layered double hydroxides. Phys Chem Chem Phys 2001:119–126

    Google Scholar 

  • Ay AN, Zümreoglu-Karan B, Temel A (2007) Boron removal by hydrotalcite-like, carbonate-free Mg–Al–NO3 LDH and a rationale on the mechanism. Micropor Mesopor Mater 98(1–3):1–5

    Article  CAS  Google Scholar 

  • Bish DL (1980) Anion-exchange in takovite: applications to other hydroxide minerals. Bone Miner 103:170–175

    CAS  Google Scholar 

  • Bujdoso T, Patzko A, Galbac Z, Dekany I (2009) Structural characterization of arsenate ion exchanged MgAl-layered double hydroxide. Appl Clay Sci 44:75–82

    Article  CAS  Google Scholar 

  • Carja G, Nakamura R, Niiyama H (2005) Tailoring the porous properties of iron containing mixed oxides for As(V) removal from aqueous solutions. Micropor Mesopor Mater 83:94–100

    Article  CAS  Google Scholar 

  • Carja G, Ratoi S, Ciobanu G, Balasanian I (2008) Uptake of As(V) from aqueous solution by anionic clays type FeLDHs. Desalination 223:243–248

    Article  CAS  Google Scholar 

  • Cavani F, Trifirb F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11(2):173–301

    Article  CAS  Google Scholar 

  • Cummings DE, Caccavo JF, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella aiga BrY. Environ Sci Technol 33:723–729

    Article  CAS  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  CAS  Google Scholar 

  • Ding Y, Gui Z, Zhu J, Hu Y, Wang Z (2008) Exfoliated poly(methyl methacrylate)/MgFe-layered double hydroxide nanocomposites with small inorganic loading and enhanced properties. Mater Res Bull 43:3212–3220

    Article  CAS  Google Scholar 

  • Evans DG, Duan X (2006) Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem Commun 5:485–496

    Article  Google Scholar 

  • Gaboriaud F, Ehrhardt JJ (2003) Effects of different crystal faces on the surface charge of colloidal goethite (α-FeOOH) particles: an experimental and modeling study. Geochim Cosmochim Acta 67(5):967–983

    Article  CAS  Google Scholar 

  • Gasser MS, Mohsen HT, Aly HF (2008) Humic acid adsorption onto Mg/Fe layered double hydroxide. Colloids Surf A 331:195–201

    Article  CAS  Google Scholar 

  • Goh KH, Lim TT, Dong Z (2009) Enhanced arsenic removal by hydrothermally treated nanocrystalline Mg/Al layered double hydroxide with nitrate intercalation. Environ Sci Technol 43(7):2537–2543

    Article  CAS  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanism of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234(1):204–216

    Article  CAS  Google Scholar 

  • Jia YF, Xu L, Fang Z, Demopoulos GP (2006) Observation of surface precipitation of arsenate on ferrihydrite. Environ Sci Technol 40(10):3248–3253

    Article  CAS  Google Scholar 

  • Kaltreider RC, Davis A, Lariviere JP, Hamilton JW (2001) Arsenic alters the function of the glucocorticoid receptor as a transcription factor. Environ Health Perspect 109:245–251

    Article  CAS  Google Scholar 

  • Lazarridis NK, Hourzemanoglou A, Matis KA (2002) Flotation of metal-loaded clay anion exchangers. Part II: The case of arsenates. Chemosphere 47(3):319–324

    Article  Google Scholar 

  • Li F, Duan X (2005) Application of layered double hydroxides. Struct Bond 119(1):193–223

    Google Scholar 

  • Liang X, Hou W, Xu J (2009) Sorption of Pb(II) on Mg-Fe layered double hydroxide. Chin J Chem 27(10):1981–1988

    Article  CAS  Google Scholar 

  • Lloyd JR, Ormland RS (2006) Microbial transformations of arsenic in the environment: from soda lakes to aquifers. Elements 2:85–90

    Article  CAS  Google Scholar 

  • Myneni SCB, Traina SJ, Waychunas GA, Logan TJ (1998) Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids and at mineral-water interfaces. Geochim Cosmochim Acta 62(19–20):3285–3300

    Article  CAS  Google Scholar 

  • Prasanna SV, Vishnu KP (2009) Synthesis and characterization of arsenate-intercalated layered double hydroxides (LDHs): prospects for arsenic mineralization. J Colloid Interface Sci 331:439–445

    Article  CAS  Google Scholar 

  • Sherman DM, Randall S (2003) Surface complexation of arsenic(V) to iron(III) (hydro)oxides: structural mechanism from molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67(22):4223–4230

    Article  CAS  Google Scholar 

  • Singh S, Greene RM, Pisano MM (2009) Arsenate-induced apoptosis in murine embryonic maxillary mesenchymal cells via mitochondrial-mediated oxidative injury. Birth Defects Res A Clin Mol Teratol 88(1):25–34

    Google Scholar 

  • Toraishi T, Nagasaki S, Tanaka S (2002) Adsorption behavior of IO3 by CO3 2− and NO3 hydrotalcite. Appl Clay Sci 22(1–2):17–23

    Article  CAS  Google Scholar 

  • Vacari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41(1–3):53–71

    Article  Google Scholar 

  • Wang SL, Hseu RJ, Chang RR, Chiang PN, Chen JH, Tzou YM (2006) Adsorption and thermal desorption of Cr(VI) on Li/Al layered double oxide. Colloids Surf A 277(1–3):8–14

    Article  CAS  Google Scholar 

  • Xu ZP, Braterman PS (2003) High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphologically changes. J Mater Chem 13:268–273

    Article  CAS  Google Scholar 

  • Xu ZP, Stevenson GS, Lu CQ, Lu GQ, Bartlett PF, Gray PP (2006) Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J Am Chem Soc 128(1):36–37

    Article  CAS  Google Scholar 

  • Yang L, Shahrivari Z, Liu PKT, Sahimi M, Tsotsis TT (2005) Removal of trace levels of arsenic and selenium from aqueous solutions by calcined and uncalcined layered double hydroxides (LDH). Ind Eng Chem Res 44(17):6804–6815

    Article  CAS  Google Scholar 

  • Yang L, Dadwhal M, Shahrivari Z, Ostwal M, Paul KT, Sahimi M, Tsotsis TT (2006) Adsorption of arsenic on layered double hydroxides: effect of particle size. Ind Eng Chem Res 45(13):4742–4751

    Article  CAS  Google Scholar 

  • Yong R, Warkentin BP (1990) Buffer capacity and lead retention in some clay materials. Water Air Pollut 53(1–2):53–67

    CAS  Google Scholar 

  • You YW, Zhao HT, Vance GF (2001) Removal of arsenite from aqueous solutions by anionic clays. Environ Technol 22(12):1447–1457

    Article  CAS  Google Scholar 

  • Zhang M, Reardon EJ (2003) Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite. Environ Sci Technol 37(13):2947–2952

    Article  CAS  Google Scholar 

  • Zhao H, Stanforth R (2001) Competitive adsorption of phosphate and arsenate on goethite. Environ Sci Technol 35(24):4753–4757

    Article  CAS  Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization or arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JY., Kim, JH. Characterization of adsorbed arsenate on amorphous and nano crystalline MgFe-layered double hydroxides. J Nanopart Res 13, 887–894 (2011). https://doi.org/10.1007/s11051-010-9936-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9936-z

Keywords

Navigation