Skip to main content
Log in

Effects of dry processing on adsorption of uranium on Mg-Al layered double hydroxides and calcined layered double oxides

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Mg-Al layered double hydroxides (LDH) (F-MgAl-LDHs and O-MgAl-LDHs) and Mg-Al layered double oxides (LDO) (F-MgAl-LDO and O-MgAl-LDO) nanosheets were prepared using a modified co-precipitation and oven/freeze dry route for adsorption of uranium. The freeze dry could evidently promote the adsorption ability. It’s resulted from larger specific surface (F-MgAl-LDO > F-MgAl-LDHs > O-MgAl-LDO > O-MgAl-LDHs) and pore size, as well as sufficient expose of vacant sites in the inner struture of F-MgAl-LDHs and F-MgAl-LDO. The pH, shaking time, initial uranium concentation and temperature influenced the adsorption capacity of F-MgAl-LDHs, O-MgAl-LDHs, F-MgAl-LDO and O-MgAl-LDO, while ionic strength exerted slightly little influence. Na2CO3 highlighted the best desorption effectivity, with desorption efficiency of 97.84% for F-MgAl-LDHs and 98.52% for F-MgAl-LDO, respectively. It is noteworthy that maximum adsorption capacity of F-MgAl-LDO reached 1099.93 mg/g, locating the top rank in the uranium-specific adsorbents. The adsorption conformed to the pseudo-second-order model, indicating chemical adsorption in nature. The thermodynamic was also investigated. The adsorption mechanism was determined that M-O and C-O bonds participated the complex process in the uranium adsorption. The study proposed the freeze dry as an efficient method to promote adsorbent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vasudevamurthy G, Nelson AT (2022) Uranium carbide properties for advanced fuel modeling–A review. J Nucl Mater 558:153145

    Article  CAS  Google Scholar 

  2. Şenol ZM, Keskin ZS, Özer A, Şimşek S (2022) Application of kaolinite-based composite as an adsorbent for removal of uranyl ions from aqueous solution: kinetics and equilibrium study. J Radioanal Nucl Chem 331:403–414

    Article  Google Scholar 

  3. Sar SK, Diwan V, Biswas S, Singh S, Sahu M, Jindal MK, Arora A (2018) Study of uranium level in groundwater of Balod district of Chhattisgarh state, India and assessment of health risk. Hum Ecol Risk Assess 24:691–698

    Article  CAS  Google Scholar 

  4. Şenol ZM (2021) A chitosan-based composite for adsorption of uranyl ions; mechanism, isothems, kinetics and thermodynamics. Int J Biol Macromol 183:1640–1648

    Article  PubMed  Google Scholar 

  5. Liao J, Liu P, Xie Y, Zhang Y (2021) Metal oxide aerogels: Preparation and application for the uranium removal from aqueous solution. Sci Total Environ 768:144212

    Article  CAS  PubMed  Google Scholar 

  6. Ma F, Gui Y, Liu P, Xue Y, Song W (2020) Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation. Chem Eng J 390:124597

    Article  CAS  Google Scholar 

  7. Sen K, Mishra D, Debnath P, Mondal A, Mondal NK (2021) Adsorption of uranium (VI) from groundwater by silicon containing biochar supported iron oxide nanoparticle. Bioresour Technol Rep 14:100659

    Article  CAS  Google Scholar 

  8. Yang L, Chen M, Lu Z, Huang Y, Wang J, Lu L, Cheng X (2020) Synthesis of CaFeAl layered double hydroxides 2D nanosheets and the adsorption behaviour of chloride in simulated marine concrete. Cem Concr Compos 114:103817

    Article  CAS  Google Scholar 

  9. Wang H, Zhao W, Chen Y, Li Y (2020) Nickel aluminum layered double oxides modified magnetic biochar from waste corncob for efficient removal of acridine orange. Bioresour Technol 315:123834

    Article  CAS  PubMed  Google Scholar 

  10. Zubair M, Manzar MS, Mu’azu ND, Anil I, Blaisi NI, Al-Harthi MA (2020) Functionalized MgAl-layered hydroxide intercalated date-palm biochar for Enhanced Uptake of Cationic dye: Kinetics, isotherm and thermodynamic studies. Appl Clay Sci 190:105587

    Article  CAS  Google Scholar 

  11. Jung KW, Lee SY, Choi JW, Hwang MJ, Shim WG (2021) Synthesis of Mg-Al layered double hydroxides-functionalized hydrochar composite via an in situ one-pot hydrothermal method for arsenate and phosphate removal: structural characterization and adsorption performance. Chem Eng J 420:129775

    Article  CAS  Google Scholar 

  12. Shi X, Kang L, Hong J, Wang C, Wei R, Naik N, Guo Z (2021) Strong selectivity and high capacity in the adsorption of As (V) from wastewater by glycine-modified Fe/Cu-layered double hydroxides. J Alloys Compd 865:158956

    Article  CAS  Google Scholar 

  13. Claros M, Kuta J, El-Dahshan O, Michalička J, Jimenez YP, Vallejos S (2021) Hydrothermally synthesized MnO2 nanowires and their application in Lead (II) and Copper (II) batch adsorption. J Mol Liq 325:115203

    Article  CAS  Google Scholar 

  14. Sachan D, Das G (2022) Fabrication of Biochar-Impregnated MnO2 Nanocomposite: Characterization and Potential Application in Copper (II) and Zinc (II) Adsorption. J Hazard Toxic Radioact Waste 26:04021049

    Article  CAS  Google Scholar 

  15. Ying D, Hong P, Jiali F, Qinqin T, Yuhui L, Youqun W, Zhibin Z, Xiaohong C, Yunhai L (2020) Removal of uranium using MnO2/orange peel biochar composite prepared by activation and in-situ deposit in a single step. Biomass Bioenergy 142:105772

    Article  CAS  Google Scholar 

  16. Hong Y, Peng J, Zhao X, Yan Y, Lai B, Yao G (2019) Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate: optimization, degradation pathways and mechanism. Chem Eng J 370:354–363

    Article  CAS  Google Scholar 

  17. Hong Y, Zhou H, Xiong Z, Liu Y, Yao G, Lai B (2020) Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: Efficiency, mechanism and degradation pathways. Chem Eng J 391:123604

    Article  CAS  Google Scholar 

  18. Deng H, Li A, Ye C, Sheng L, Li Z, Jiang Y (2020) Green Removal of Various Pollutants by Microsphere Adsorption: Material Characterization and Adsorption Behavior. Energy Fuels 34:16330–16340

    Article  CAS  Google Scholar 

  19. Hou T, Yan L, Li J, Yang Y, Shan L, Meng X, Li X, Zhao Y (2020) Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent. Chem Eng J 384:123331

    Article  CAS  Google Scholar 

  20. Wu H, Liu X, Wen J, Liu Y, Zheng X (2021) Rare-earth oxides modified Mg-Al layered double oxides for the enhanced adsorption-photocatalytic activity. Colloids Surf A 610:125933

    Article  CAS  Google Scholar 

  21. Xu S-d, Dong L, Guo X-y, Wen Y, Jie G (2019) Selenium (VI) removal from caustic solution by synthetic Ca-Al-Cl layered double hydroxides. Trans Nonferrous Met Soc China 29:1763–1775

    Article  CAS  Google Scholar 

  22. Karami Z, Jouyandeh M, Ali JA, Ganjali MR, Aghazadeh M, Maadani M, Rahn M, Luzi F, Torre L, Puglia D, Saeb MR (2019) Development of Mg-Zn-Al-CO3 ternary LDH and its curability in epoxy/amine system. Prog Org Coat 136:105264

    Article  CAS  Google Scholar 

  23. Noli F, Kapashi E, Kapnisti M (2019) Biosorption of uranium and cadmium using sorbents based on Aloe vera wastes. J Environ Chem Eng 7:102985

    Article  CAS  Google Scholar 

  24. Aniagor CO, Elshkankery M, Fletcher A, Morsy OM, Abdel-Halim E, Hashem A (2021) Equilibrium and kinetic modelling of aqueous cadmium ion and activated carbon adsorption system. Water Conserv Sci Eng 6:95–104

    Article  Google Scholar 

  25. Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater 393:122383

    Article  CAS  PubMed  Google Scholar 

  26. Xie J, Lv R, Peng H, Fan J, Tao Q, Dai Y, Zhang Z, Cao X, Liu Y (2020) Phosphate functionalized poly (vinyl alcohol)/poly (acrylic acid)(PVA/PAA): an electrospinning nanofiber for uranium separation. J Radioanal Nucl Chem 326:475–486

    Article  CAS  Google Scholar 

  27. Xie J, Dai Y, Wang Y, Liu Y, Zhang Z, Wang Y, Tao Q, Liu Y (2021) Facile immobilization of NiFeAl-LDHs into electrospun poly (vinyl alcohol)/poly (acrylic acid) nanofibers for uranium adsorption. J Radioanal Nucl Chem 329:1103–1117

    Article  CAS  Google Scholar 

  28. Duan J, Ji H, Xu T, Pan F, Liu X, Liu W, Zhao D (2021) Simultaneous adsorption of uranium (VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chem Eng J 406:126752

    Article  CAS  Google Scholar 

  29. Chaudhary M, Singh L, Rekha P, Srivastava VC, Mohanty P (2019) Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine. Chem Eng J 378:122236

    Article  CAS  Google Scholar 

  30. Yuvaraja G, Su M, Chen DY, Pang Y, Kong LJ, Subbaiah MV, Reddy GM (2020) Impregnation of magnetic-Momordica charantia leaf powder into chitosan for the removal of U (VI) from aqueous and polluted wastewater. Int J Biol Macromol 149:127–139

    Article  CAS  PubMed  Google Scholar 

  31. Zhao C, Liu J, Deng Y, Tian Y, Zhang G, Liao J, Sun Q (2019) Uranium (IV) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach. J Clean Prod 236:117624

    Article  CAS  Google Scholar 

  32. El-Bohy MN, Abdel-Monem YK, Rabie KA, Farag NM, Mahfouz MG, Galhoum AA, Guibal E (2017) Grafting of arginine and glutamic acid onto cellulose for enhanced uranyl sorption. Cellulose 24:1427–1443

    Article  CAS  Google Scholar 

  33. Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) Investigation of uranium (VI) adsorption by polypyrrole. J Hazard Mater 332:132–139

    Article  CAS  PubMed  Google Scholar 

  34. Shao D, Li Y, Wang X, Hu S, Wen J, Xiong J, Marwani H (2017) M. Phosphate-functionalized polyethylene with high adsorption of uranium (VI). Acs Omega 2(7):3267–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qin X, Yang W, Yang W, Ma Y, Li M, Chen C, Pan Q (2021) Covalent modification of ZIF-90 for uranium adsorption from seawater. Micropor Mesopor Mat 323:111231

    Article  CAS  Google Scholar 

  36. Zhao S, Feng T, Feng L, Yan B, Sun W, Luo G, Wang N (2022) Rapid recovery of uranium with magnetic-single-molecular amidoxime adsorbent,Sep. Purif. Technol.120524

  37. Li Y, Dai Y, Tao QQ, Gao Z, Xu L (2022) Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: Performance and mechanism. Int J Biol Macromol 214:54–66

    Article  CAS  PubMed  Google Scholar 

  38. Şenol ZM, Kaya S, Şimşek S, Katin KP, Özer A, Marzouki R (2022) Synthesis and characterization of chitosan-vermiculite-lignin ternary composite as an adsorbent for effective removal of uranyl ions from aqueous solution: Experimental and theoretical analyses. Int J Biol Macromol 209:1234–1247

    Article  PubMed  Google Scholar 

  39. Meng J, Lin X, Li H, Zhang Y, Zhou J, Chen Y, Shang R, Luo X (2019) Adsorption capacity of kelp-like electrospun nanofibers immobilized with bayberry tannin for uranium (VI) extraction from seawater. RSC Adv 9:8091–8103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Skwarek E, Gładysz-Płaska A, Choromańska J, Broda E (2019) Adsorption of uranium ions on nano-hydroxyapatite and modified by Ca and Ag ions. Adsorption 25:639–647

    Article  CAS  Google Scholar 

  41. Wang X, Cai Y, Han T, Fang M, Chen K, Tan X (2020) Phosphate functionalized layered double hydroxides (phos-LDH) for ultrafast and efficient U (VI) uptake from polluted solutions. J Hazard Mater 399:123081

    Article  CAS  PubMed  Google Scholar 

  42. Lyu P, Wang G, Wang B, Yin Q, Li Y, Deng N (2021) Adsorption and interaction mechanism of uranium (VI) from aqueous solutions on phosphate-impregnation biochar cross-linked MgAl layered double-hydroxide composite. Appl Clay Sci 209:106146

    Article  Google Scholar 

  43. Chen M, Li S, Li L, Jiang L, Ahmed Z, Dang Z, Wu P (2021) Memory effect induced the enhancement of uranium (VI) immobilization on low-cost MgAl-double oxide: Mechanism insight and resources recovery. J Hazard Mater 401:123447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (22066001) and the Natural Science Foundation of Jiangxi Province of China (20212ACB213001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Dai or Zhirong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, q., Xie, J., Li, Y. et al. Effects of dry processing on adsorption of uranium on Mg-Al layered double hydroxides and calcined layered double oxides. J Radioanal Nucl Chem 331, 4587–4600 (2022). https://doi.org/10.1007/s10967-022-08529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08529-1

Keywords

Navigation