Skip to main content
Log in

Polymer-assisted synthesis of water-soluble PbSe quantum dots

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Stable PbSe quantum dots were synthesised in water-based media using poly(amidehydroxyurethane) water-soluble polymer. The polymer acts like a precursor carrier, blocks the particles aggregation and assures their solubility. Atomic force microscopy data show that the particle radius is smaller than the Bohr radius of PbSe. Interactions studies, performed by Fourier transform IR spectroscopy, show that the quantum dots are capped with poly(amidehydroxyurethane). The proposed synthesis was realised in the absence of any organic solvent. As a result, the produced particles have good water solubility, stability and good arguments to be biologically compatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apostu M, Melnig V (2006) Tunable temperature behaviour of water-soluble polyamidhydroxyurethane. J Optoelectron Adv Mater 8(3):1044–1047

    CAS  Google Scholar 

  • Badr Y, Mahmoud MA (2006) Size-dependent spectroscopic, optical, and electrical properties of PbSe nanoparticles. Cryst Res Technol 41(7):658–663

    Article  CAS  Google Scholar 

  • Ballou B (2005) Quantum dot surfaces for use in vivo and in vitro. Curr Top Dev Biol 70:103–120

    Article  CAS  Google Scholar 

  • Choi S-J, Woo D-H, Myung N et al (2001) Electrochemical preparation of cadmium selenide nanoparticles by the use of molecular templates. J Electrochem Soc 148(9):C569–C573

    Article  CAS  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  Google Scholar 

  • Ellingson RJ, Beard MC, Johnson JC et al (2005) Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 5(5):865–871

    Article  CAS  Google Scholar 

  • Guha S, Leppert VJ, Risbud SH et al (1998) Observation of excitonic states in PbSe nanocrystals. Solid State Commun 105(11):695–699

    Article  CAS  Google Scholar 

  • Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Article  CAS  Google Scholar 

  • Koetz J, Kosmella S (2007) Polyelectrolytes and nanoparticles. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Lipovskii A, Kolobkova E, Petrikov V et al (1997) Synthesis and characterization of PbSe quantum dots in phosphate glass. Appl Phys Lett 71(23):3406–3408

    Article  CAS  Google Scholar 

  • Luther JM, Beard MC, Song Q et al (2007) Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett 7(6):1779–1784

    Article  CAS  Google Scholar 

  • Ma X-D, Qian X-F, Yin J et al (2002) Preparation and characterization of polyvinyl alcohol–selenide nanocomposites at room temperature. J Mater Chem 12:663–666

    Article  CAS  Google Scholar 

  • Melnig V, Ciobanu C (2005) Characterization of water-soluble polyamidhydroxyurethane for biological applications. J Optoelectron Adv Mater 7(6):2809–2815

    CAS  Google Scholar 

  • Melnig V, Pohoata V, Obreja L et al (2006) Water-soluble polyamidhydroxyuretane swelling behaviour. J Optoelectron Adv Mater 8(3):1040–1043

    CAS  Google Scholar 

  • Murray CB, Sun S, Gaschler W et al (2001) Colloidal synthesis of nanocrystals and nanocrystals superlattices. IBM J Res Dev 45(1):47–56

    Article  CAS  Google Scholar 

  • Nozik AJ (2005) Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorg Chem 44:6893–6899

    Article  CAS  Google Scholar 

  • Olkhovets A, Hsu RC, Lipovskii A et al (1998) Size-dependent temperature variation of the energy gap in lead-salt quantum dots. Phys Rev Lett 81(16):3539–3542

    Article  CAS  Google Scholar 

  • Peng XS, Meng GW, Zhang J et al (2002) Strong quantum confinement in ordered PbSe nanowire arrays. J Mater Res 17(6):1283–1286

    Article  CAS  Google Scholar 

  • Poudel B, Wang WZ, Wang DZ et al (2001) Shape evolution of lead telluride and selenide nanostructures under different hydrothermal synthesis conditions. J Nanosci Nanotechnol 6:1050–1053

    Article  CAS  Google Scholar 

  • Salazar-Alvarez G, Björkman E, Lopes C et al (2007) Synthesis and nonlinear light scattering of microemulsions and nanoparticles suspensions. J Nanopart Res 9:647–652

    Article  CAS  Google Scholar 

  • Sargent EH (2005) Infrared quantum dots. Adv Mater 17(5):515–522

    Article  CAS  Google Scholar 

  • Seydel C (2003) Quantum dots get wet. Science 300:80–81

    Article  CAS  Google Scholar 

  • Steckel JS, Coe-Sullivan S, Bulovic V et al (2003) 1.3 μm–1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv Mater 15(21):1862–1866

    Article  CAS  Google Scholar 

  • Weibo C, Andrew RH, Zi-Bo L et al (2007) Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2:265–281

    Article  CAS  Google Scholar 

  • Wise FW (2000) Lead salt quantum dots: the limit of strong quantum confinement. Acc Chem Res 33:773–780

    Article  CAS  Google Scholar 

  • Zemel JN (1973) The semiconductor chemical sensor. J Franklin Inst 296(6):475–483

    Article  CAS  Google Scholar 

  • Zhao W-B, Zhu J-J, Chen H-Y (2003) Photochemical preparation of rectangular PbSe and CdSe nanoparticles. J Cryst Growth 252:587–592

    Article  CAS  Google Scholar 

  • Zhao W-B, Zhu J-J, Chen H-Y (2004) Photochemical synthesis of CdSe and PbSe nanowire arrays on a porous aluminum oxide template. Scripta Mater 50:1169–1173

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by the CNCSIS Type A Nr. 1149/28/2006 scientific research project in the frame of the Romanian MEC Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Melnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnig, V., Apostu, MO. & Foca, N. Polymer-assisted synthesis of water-soluble PbSe quantum dots. J Nanopart Res 10 (Suppl 1), 171–177 (2008). https://doi.org/10.1007/s11051-008-9449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9449-1

Keywords

Navigation