Skip to main content
Log in

Predictive multibody dynamic simulation of human neuromusculoskeletal systems: a review

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Over the past decade, there has been a rapid increase in applications of multibody system dynamics to the predictive simulation of human movement. Using predictive “what-if” human dynamic simulations that do not rely on experimental testing or prototypes, new medical interventions and devices can be developed more quickly, cheaply, and safely. In this paper, we provide a comprehensive review of research into the predictive multibody dynamic simulation of human movements, with applications in clinical practice, medical and assistive device design, sports, and industrial ergonomics. Multibody models of human neuromusculoskeletal systems are reviewed, including models of joints, contacts, and muscle forces or torques, followed by a review of simulation approaches that use optimal control methods and a cost function to predict human movements. Modelling and optimal control software are also reviewed, and directions for future research are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

A detailed description of each modeling element and of each of the components of the optimization formulations for the most relevant predictive simulations in the literature can be found in an Excel file in the Supplementary material.

References

  1. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997). https://doi.org/10.1023/A:1009745432698

    Article  MathSciNet  MATH  Google Scholar 

  2. McPhee, J.J., Kövecses, J.: Foreword. Proc. IUTAM 2, 1–3 (2011). https://doi.org/10.1016/j.piutam.2011.04.001

    Article  Google Scholar 

  3. Fregly, B.J.: A conceptual blueprint for making neuromusculoskeletal models clinically useful. Appl. Sci. 11(5), 2037 (2021). https://doi.org/10.3390/app11052037

    Article  Google Scholar 

  4. De Groote, F., Falisse, A.: Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait. Proc. R. Soc. B, Biol. Sci. 288(1946), 20202432 (2021). https://doi.org/10.1098/rspb.2020.2432

    Article  Google Scholar 

  5. Morrison, T.M., Pathmanathan, P., Adwan, M., Margerrison, E.: Advancing regulatory science with computational modeling for medical devices at the FDA’s office of science and engineering laboratories. Front. Med. 5, 1–11 (2018). https://doi.org/10.3389/fmed.2018.00241

    Article  Google Scholar 

  6. Pandy, M.G., Zajac, F.E., Sim, E., Levine, W.S.: An optimal control model for maximum-height human jumping. J. Biomech. 23(12), 1185–1198 (1990). https://doi.org/10.1016/0021-9290(90)90376-E

    Article  Google Scholar 

  7. Felis, M.L., Mombaur, K.: Synthesis of full-body 3-D human gait using optimal control methods. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 2016-June, pp. 1560–1566. IEEE, Stockholm, Sweden (2016). https://doi.org/10.1109/ICRA.2016.7487294

    Chapter  Google Scholar 

  8. Miller, R.H., Brandon, S.C., Deluzio, K.J.: Predicting sagittal plane biomechanics that minimize the axial knee joint contact force during walking. J. Biomech. Eng. 135(1), 1–11 (2013). https://doi.org/10.1115/1.4023151

    Article  Google Scholar 

  9. Sreenivasa, M., Millard, M., Felis, M., Mombaur, K., Wolf, S.I.: Optimal control based stiffness identification of an ankle-foot orthosis using a predictive walking model. Front. Comput. Neurosci. 11, 23 (2017). https://doi.org/10.3389/fncom.2017.00023

    Article  Google Scholar 

  10. Febrer-Nafría, M., Pallarès-López, R., Fregly, B.J., Font-Llagunes, J.M.: Prediction of three-dimensional crutch walking patterns using a torque-driven model. Multibody Syst. Dyn. 51(1), 1–19 (2021). https://doi.org/10.1007/s11044-020-09751-z

    Article  Google Scholar 

  11. Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. J. Biomech. Eng. 123(5), 381 (2001). https://doi.org/10.1115/1.1392310

    Article  Google Scholar 

  12. Fregly, B.J., Reinbolt, J.A., Chmielewski, T.L.: Evaluation of a patient-specific cost function to predict the influence of foot path on the knee adduction torque during gait. Comput. Methods Biomech. Biomed. Eng. 11(1), 63–71 (2008). https://doi.org/10.1080/10255840701552036

    Article  Google Scholar 

  13. García-Vallejo, D., Schiehlen, W.: 3D-simulation of human walking by parameter optimization. Arch. Appl. Mech. 82(4), 533–556 (2012). https://doi.org/10.1007/s00419-011-0571-7

    Article  MATH  Google Scholar 

  14. García-Vallejo, D., Font-Llagunes, J.M., Schiehlen, W.: Dynamical analysis and design of active orthoses for spinal cord injured subjects by aesthetic and energetic optimization. Nonlinear Dyn. 84(2), 559–581 (2016). https://doi.org/10.1007/s11071-015-2507-1

    Article  MathSciNet  Google Scholar 

  15. Reinbolt, J.A., Haftka, R.T., Chmielewski, T.L., Fregly, B.J.: A computational framework to predict post-treatment outcome for gait-related disorders. Med. Eng. Phys. 30(4), 434–443 (2008). https://doi.org/10.1016/j.medengphy.2007.05.005

    Article  Google Scholar 

  16. Wang, Q., Xiang, Y.J., Arora, J.S., Malek, K.A.: Alternative formulations for optimization-based human gait planning. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, vol. 3, pp. 2531–2542. American Institute of Aeronautics and Astronautics Inc., Honolulu, Hawaii (2007). https://doi.org/10.2514/6.2007-1909

    Chapter  Google Scholar 

  17. Ren, L., Jones, R.K., Howard, D.: Predictive modelling of human walking over a complete gait cycle. J. Biomech. 40(7), 1567–1574 (2007). https://doi.org/10.1016/j.jbiomech.2006.07.017

    Article  Google Scholar 

  18. Jansen, C., McPhee, J.: Predictive dynamic simulation of Olympic track cycling standing start using direct collocation optimal control. Multibody Syst. Dyn. 49(1), 53–70 (2020). https://doi.org/10.1007/s11044-020-09723-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Fregly, B., Reinbolt, J., Rooney, K., Mitchell, K., Chmielewski, T.: Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans. Biomed. Eng. 54(9), 1687–1695 (2007). https://doi.org/10.1109/TBME.2007.891934

    Article  Google Scholar 

  20. Shourijeh, M., Razavian, R.S., McPhee, J.: Estimation of maximum finger tapping frequency using musculoskeletal dynamic simulations. J. Comput. Nonlinear Dyn. 12(5), 051009 (2017). https://doi.org/10.1115/1.4036288

    Article  Google Scholar 

  21. Menegaldo, L.L., Fleury, A.D.T., Weber, H.I.: Biomechanical modeling and optimal control of human posture. J. Biomech. 36(11), 1701–1712 (2003). https://doi.org/10.1016/S0021-9290(03)00170-2

    Article  Google Scholar 

  22. Stelzer, M., Von Stryk, O.: Efficient forward dynamics simulation and optimization of human body dynamics. Z. Angew. Math. Mech. 86(10), 828–840 (2006). https://doi.org/10.1002/zamm.200610290

    Article  MathSciNet  MATH  Google Scholar 

  23. Mehrabi, N., Sharif Razavian, R., Ghannadi, B., McPhee, J., Predictive simulation of reaching moving targets using nonlinear model predictive control. Front. Comput. Neurosci. 10, 143 (2017). https://doi.org/10.3389/fncom.2016.00143

    Article  Google Scholar 

  24. Eskinazi, I., Fregly, B.J.: A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling. Med. Eng. Phys. 54, 56–64 (2018). https://doi.org/10.1016/j.medengphy.2018.02.002

    Article  Google Scholar 

  25. Sherman, M.A., Seth, A., Delp, S.L.: Simbody: multibody dynamics for biomedical research. In: Procedia IUTAM, vol. 2, pp. 241–261. Elsevier, Amsterdam (2011). https://doi.org/10.1016/j.piutam.2011.04.023

    Chapter  Google Scholar 

  26. Hicks, J.L., Uchida, T.K., Seth, A., Rajagopal, A., Delp, S.L.: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J. Biomech. Eng. 137(2), 020905 (2015). https://doi.org/10.1115/1.4029304

    Article  Google Scholar 

  27. Dembia, C.L., Bianco, N.A., Falisse, A., Hicks, J.L., Delp, S.L.: OpenSim Moco: musculoskeletal optimal control. PLoS Comput. Biol. 16, 1–21 (2020). https://doi.org/10.1371/journal.pcbi.1008493

    Article  Google Scholar 

  28. Dzeladini, F., van den Kieboom, J., Ijspeert, A.: The contribution of a central pattern generator in a reflex-based neuromuscular model. Front. Human Neurosci. 8, 1–18 (2014). https://doi.org/10.3389/fnhum.2014.00371

    Article  Google Scholar 

  29. Liu, C.K., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24(3), 1071–1081 (2005). https://doi.org/10.1145/1073204.1073314

    Article  Google Scholar 

  30. Veerkamp, K., Waterval, N.F., Geijtenbeek, T., Carty, C.P., Lloyd, D.G., Harlaar, J., van der Krogt, M.M.: Evaluating cost function criteria in predicting healthy gait. J. Biomech. 123, 110530 (2021). https://doi.org/10.1016/j.jbiomech.2021.110530

    Article  Google Scholar 

  31. Millard, M., Uchida, T.K., Seth, A., Delp, S.L.: Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135(2), 0210051 (2013). https://doi.org/10.1115/1.4023390

    Article  Google Scholar 

  32. McNally, W., McPhee, J.: Dynamic optimization of the golf swing using a six degree-of-freedom biomechanical model. Proceedings 2(6), 243 (2018). https://doi.org/10.3390/PROCEEDINGS2060243

    Article  Google Scholar 

  33. Mombaur, K., Ho Hoang, K.L.: How to best support sit to stand transfers of geriatric patients: motion optimization under external forces for the design of physical assistive devices. J. Biomech. 58, 131–138 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.037

    Article  Google Scholar 

  34. Yang, J., Ozsoy, B.: Three dimensional unassisted sit-to-stand prediction for virtual healthy young and elderly individuals. Multibody Syst. Dyn. 49(1), 33–52 (2020). https://doi.org/10.1007/s11044-019-09699-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaplan, M.L., Heegaard, J.H.: Predictive algorithms for neuromuscular control of human locomotion. J. Biomech. 34(8), 1077–1083 (2001). https://doi.org/10.1016/S0021-9290(01)00057-4

    Article  Google Scholar 

  36. Font-Llagunes, J.M., Barjau, A., Pàmies-Vilà, R., Kövecses, J.: Dynamic analysis of impact in swing-through crutch gait using impulsive and continuous contact models. Multibody Syst. Dyn. 28(3), 257–282 (2012). https://doi.org/10.1007/s11044-011-9300-9

    Article  MathSciNet  Google Scholar 

  37. Serrancoli, G., Falisse, A., Dembia, C., Vantilt, J., Tanghe, K., Lefeber, D., Jonkers, I., De Schutter, J., De Groote, F.: Subject-exoskeleton contact model calibration leads to accurate interaction force predictions. IEEE Trans. Neural Syst. Rehabil. Eng. 27(8), 1597–1605 (2019). https://doi.org/10.1109/TNSRE.2019.2924536

    Article  Google Scholar 

  38. Nasr, A., Ferguson, S., McPhee, J.: Model-based design and optimization of passive shoulder exoskeletons. J. Comput. Nonlinear Dyn. 17(5), 051004 (2022). https://doi.org/10.1115/1.4053405

    Article  Google Scholar 

  39. Nasr, A., Hashemi, A., McPhee, J.: Model-based mid-level regulation for assist-as-needed hierarchical control of wearable robots: a computational study of human-robot adaptation. Robotics 11(1), 20 (2022). https://doi.org/10.3390/robotics11010020

    Article  Google Scholar 

  40. Gidley, A.D., Marsh, A.P., Umberger, B.R.: Performance criteria for generating predictive optimal control simulations of bicycle pedaling. Comput. Methods Biomech. Biomed. Eng. 22(1), 11–20 (2019). https://doi.org/10.1080/10255842.2018.1522535

    Article  Google Scholar 

  41. Handford, M.L., Srinivasan, M.: Robotic lower limb prosthesis design through simultaneous computer optimizations of human and prosthesis costs. Sci. Rep. 6(1), 1–7 (2016). https://doi.org/10.1038/srep19983

    Article  Google Scholar 

  42. Ong, C.F., Hicks, J.L., Delp, S.L.: Simulation-based design for wearable robotic systems: an optimization framework for enhancing a standing long jump. IEEE Trans. Biomed. Eng. 63(5), 894–903 (2016). https://doi.org/10.1109/TBME.2015.2463077

    Article  Google Scholar 

  43. Felis, M., Mombaur, K.: Modeling and optimization of human walking. In: Cognitive Systems Monographs, vol. 18, pp. 31–42. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-36368-9_3

    Chapter  Google Scholar 

  44. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based prediction of asymmetric human gait. J. Biomech. 44(4), 683–693 (2011). https://doi.org/10.1016/j.jbiomech.2010.10.045

    Article  Google Scholar 

  45. Hyung, J.K., Wang, Q., Rahmatalla, S., Swan, C.C., Arora, J.S., Abdel-Malek, K., Assouline, J.G.: Dynamic motion planning of 3D human locomotion using gradient-based optimization. J. Biomech. Eng. 130(3), 031002 (2008). https://doi.org/10.1115/1.2898730

    Article  Google Scholar 

  46. Fluit, R., van der Krogt, M.M., van der Kooij, H., Verdonschot, N., Koopman, H.F.J.M.: A simple controller for the prediction of three-dimensional gait. J. Biomech. 45(15), 2610–2617 (2012). https://doi.org/10.1016/j.jbiomech.2012.08.019

    Article  Google Scholar 

  47. Anderson, F.C., Pandy, M.G.: A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2(3), 201–231 (1999). https://doi.org/10.1080/10255849908907988

    Article  Google Scholar 

  48. Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010). https://doi.org/10.1016/j.jbiomech.2009.12.012

    Article  Google Scholar 

  49. Miller, R.H.: A comparison of muscle energy models for simulating human walking in three dimensions. J. Biomech. 47(6), 1373–1381 (2014). https://doi.org/10.1016/j.jbiomech.2014.01.049

    Article  Google Scholar 

  50. Miller, R.H., Esterson, A.Y., Shim, J.K.: Joint contact forces when minimizing the external knee adduction moment by gait modification: a computer simulation study. Knee 22(6), 481–489 (2015). https://doi.org/10.1016/j.knee.2015.06.014

    Article  Google Scholar 

  51. Meyer, A.J., Eskinazi, I., Jackson, J.N., Rao, A.V., Patten, C., Fregly, B.J.: Muscle synergies facilitate computational prediction of subject-specific walking motions. Front. Bioeng. Biotechnol. 4, 77 (2016). https://doi.org/10.3389/fbioe.2016.00077

    Article  Google Scholar 

  52. Miller, R.H., Umberger, B.R., Hamill, J., Caldwell, G.E.: Evaluation of the minimum energy hypothesis and other potential optimality criteria for human running. Proc. R. Soc. B, Biol. Sci. 279(1733), 1498–1505 (2012). https://doi.org/10.1098/rspb.2011.2015

    Article  Google Scholar 

  53. Koelewijn, A.D., van den Bogert, A.J.: Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations. Gait Posture 49, 219–225 (2016). https://doi.org/10.1016/j.gaitpost.2016.07.007

    Article  Google Scholar 

  54. Dorn, T.W., Wang, J.M., Hicks, J.L., Delp, S.L.: Predictive simulation generates human adaptations during loaded and inclined walking. PLoS ONE 10(4), e0121407 (2015). https://doi.org/10.1371/journal.pone.0121407

    Article  Google Scholar 

  55. Porsa, S., Lin, Y.C., Pandy, M.G.: Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim. Ann. Biomed. Eng. 44(8), 2542–2557 (2016). https://doi.org/10.1007/s10439-015-1538-6

    Article  Google Scholar 

  56. Lin, Y.C., Walter, J.P., Pandy, M.G.: Predictive simulations of neuromuscular coordination and joint-contact loading in human gait. Ann. Biomed. Eng. 46(8), 1216–1227 (2018). https://doi.org/10.1007/s10439-018-2026-6

    Article  Google Scholar 

  57. Ong, C.F., Geijtenbeek, T., Hicks, J.L., Delp, S.L.: Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations. PLoS Comput. Biol. 15(10), e1006993 (2019). https://doi.org/10.1371/journal.pcbi.1006993

    Article  Google Scholar 

  58. Lopes, D.S., Neptune, R.R., Ambrósio, J.A., Silva, M.T.: A superellipsoid-plane model for simulating foot-ground contact during human gait. Comput. Methods Biomech. Biomed. Eng. 19(9), 954–963 (2016). https://doi.org/10.1080/10255842.2015.1081181

    Article  Google Scholar 

  59. Millard, M., Kecskeméthy, A.: A 3D foot-ground model using disk contacts. In: The 3rd Joint International Conference on Multibody System Dynamics & the 7th Asian Conference on Multibody Dynamics, Busan, Korea (2014)

    Google Scholar 

  60. Gonthier, Y., Lange, C., McPhee, J., Piedbœuf, J.C.: A contact modeling method based on volumetric properties. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6 A, pp. 477–486. ASME, Long Beach, California, USA (2005). https://doi.org/10.1115/detc2005-84610

    Chapter  Google Scholar 

  61. Shourijeh, M.S., McPhee, J.: Foot–ground contact modeling within human gait simulations: from Kelvin–Voigt to hyper-volumetric models. Multibody Syst. Dyn. 35(4), 393–407 (2015). https://doi.org/10.1007/s11044-015-9467-6

    Article  MathSciNet  MATH  Google Scholar 

  62. Brown, P., McPhee, J.: A 3D ellipsoidal volumetric foot–ground contact model for forward dynamics. Multibody Syst. Dyn. 42(4), 447–467 (2018). https://doi.org/10.1007/s11044-017-9605-4

    Article  MathSciNet  MATH  Google Scholar 

  63. Ezati, M., Brown, P., Ghannadi, B., McPhee, J.: Comparison of direct collocation optimal control to trajectory optimization for parameter identification of an ellipsoidal foot–ground contact model. Multibody Syst. Dyn. 49(1), 71–93 (2020). https://doi.org/10.1007/s11044-020-09731-3

    Article  MathSciNet  MATH  Google Scholar 

  64. Halloran, J.P., Ackermann, M., Erdemir, A., van den Bogert, A.J.: Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. J. Biomech. 43(14), 2810–2815 (2010). https://doi.org/10.1016/j.jbiomech.2010.05.036

    Article  Google Scholar 

  65. Halloran, J.P., Erdemir, A., Van Den Bogert, A.J.: Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. J. Biomech. Eng. 131(1), 1–7 (2009). https://doi.org/10.1115/1.3005333

    Article  Google Scholar 

  66. Verulkar, A., Sandu, C., Dopico, D., Sandu, A.: Computation of direct sensitivities of spatial multibody systems with joint friction. J. Comput. Nonlinear Dyn. 17(7), 071006 (2022). https://doi.org/10.1115/1.4054110

    Article  Google Scholar 

  67. Song, S., Geyer, H.: A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. 593(16), 3493–3511 (2015). https://doi.org/10.1113/JP270228

    Article  Google Scholar 

  68. Maw, N., Barber, J.R., Fawcett, J.N.: The oblique impact of elastic spheres. Wear 38(1), 101–114 (1976). https://doi.org/10.1016/0043-1648(76)90201-5

    Article  Google Scholar 

  69. Inkol, K.A., Brown, C., McNally, W., Jansen, C., McPhee, J.: Muscle torque generators in multibody dynamic simulations of optimal sports performance. Multibody Syst. Dyn. 50(4), 435–452 (2020). https://doi.org/10.1007/s11044-020-09747-9

    Article  MathSciNet  MATH  Google Scholar 

  70. Miller, R.H., Umberger, B.R., Caldwell, G.E.: Limitations to maximum sprinting speed imposed by muscle mechanical properties. J. Biomech. 45(6), 1092–1097 (2012). https://doi.org/10.1016/j.jbiomech.2011.04.040

    Article  Google Scholar 

  71. Shourijeh, M., Mehrabi, N., McPhee, J.: Forward static optimization in dynamic simulation of human musculoskeletal systems: a proof-of-concept study. J. Comput. Nonlinear Dyn. 12(5), 051005 (2017). https://doi.org/10.1115/1.4036195

    Article  Google Scholar 

  72. Wang, J.M., Hamner, S.R., Delp, S.L., Koltun, V.: Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. 31(4), 1–11 (2012). https://doi.org/10.1145/2185520.2185521

    Article  Google Scholar 

  73. Koelewijn, A.D., Dorschky, E., van den Bogert, A.J.: A metabolic energy expenditure model with a continuous first derivative and its application to predictive simulations of gait. Comput. Methods Biomech. Biomed. Eng. 21(8), 521–531 (2018). https://doi.org/10.1080/10255842.2018.1490954

    Article  Google Scholar 

  74. Russell Esposito, E., Miller, R.H.: Maintenance of muscle strength retains a normal metabolic cost in simulated walking after transtibial limb loss. PLoS ONE 13(1), e0191310 (2018). https://doi.org/10.1371/journal.pone.0191310

    Article  Google Scholar 

  75. Millard, M., Sreenivasa, M., Mombaur, K.: Predicting the motions and forces of wearable robotic systems using optimal control. Front. Robot. AI 4, 41 (2017). https://doi.org/10.3389/frobt.2017.00041

    Article  Google Scholar 

  76. Sauder, N.R., Meyer, A.J., Allen, J.L., Ting, L.H., Kesar, T.M., Fregly, B.J.: Computational design of FastFES treatment to improve propulsive force symmetry during post-stroke gait: a feasibility study. Front. Neurorobot. 13, 80 (2019). https://doi.org/10.3389/fnbot.2019.00080

    Article  Google Scholar 

  77. Razavian, R.S., Mehrabi, N., McPhee, J.: A model-based approach to predict muscle synergies using optimization: application to feedback control. Front. Comput. Neurosci. 9, 1–13 (2015). https://doi.org/10.3389/fncom.2015.00121

    Article  Google Scholar 

  78. Al Borno, M., Hicks, J.L., Delp, S.L.: The effects of motor modularity on performance, learning and generalizability in upper-extremity reaching: a computational analysis. J. R. Soc. Interface 17(167), 20200011 (2020). https://doi.org/10.1098/rsif.2020.0011

    Article  Google Scholar 

  79. Nasr, A., Laschowski, B., McPhee, J.: Myoelectric control of robotic leg prostheses and exoskeletons: a review. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 85444, pp. 2021–69203. ASME, Online, Virtual, (2021). https://doi.org/10.1115/DETC2021-69203

    Chapter  Google Scholar 

  80. Falisse, A., Pitto, L., Kainz, H., Hoang, H., Wesseling, M., Van Rossom, S., Papageorgiou, E., Bar-On, L., Hallemans, A., Desloovere, K., Molenaers, G., Van Campenhout, A., De Groote, F., Jonkers, I.: Physics-based simulations to predict the differential effects of motor control and musculoskeletal deficits on gait dysfunction in cerebral palsy: a retrospective case study. Front. Human Neurosci. 14, 40 (2020). https://doi.org/10.3389/fnhum.2020.00040

    Article  Google Scholar 

  81. Razavian, R.S., Ghannadi, B., McPhee, J.: A synergy-based motor control framework for the fast feedback control of musculoskeletal systems. J. Biomech. Eng. 141(3), 031009 (2019). https://doi.org/10.1115/1.4042185

    Article  Google Scholar 

  82. Febrer-Nafría, M., Fregly, B.J., Font-Llagunes, J.M.: Evaluation of optimal control approaches for predicting active knee-ankle-foot-orthosis motion for individuals with spinal cord injury. Front. Neurorobot. 15, 1–14 (2022). https://doi.org/10.3389/fnbot.2021.748148

    Article  Google Scholar 

  83. Nasr, A., Bell, S., He, J., Whittaker, R.L., Jiang, N., Dickerson, C.R., McPhee, J.: MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning. J. Neural Eng. 18(4), 0460d3 (2021). https://doi.org/10.1088/1741-2552/ac1adc

    Article  Google Scholar 

  84. Nasr, A., Inkol, K.A., Bell, S., McPhee, J.: InverseMuscleNET: alternative machine learning solution to static optimization and inverse muscle modeling. Front. Comput. Neurosci. 15, 759489 (2021). https://doi.org/10.3389/fncom.2021.759489

    Article  Google Scholar 

  85. Mehrabi, N., Sharif Razavian, R., McPhee, J., Razavian, R., McPhee, J.: A physics-based musculoskeletal driver model to study steering tasks. J. Comput. Nonlinear Dyn. 10(2), 1–8 (2015). https://doi.org/10.1115/1.4027333

    Article  Google Scholar 

  86. Rajagopal, A., Dembia, C.L., DeMers, M.S., Delp, D.D., Hicks, J.L., Delp, S.L.: Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63(10), 2068–2079 (2016). https://doi.org/10.1109/TBME.2016.2586891

    Article  Google Scholar 

  87. Van Campen, A., Pipeleers, G., De Groote, F., Jonkers, I., De Schutter, J.: A new method for estimating subject-specific muscle-tendon parameters of the knee joint actuators: a simulation study. Int. J. Numer. Methods Biomed. Eng. 30(10), 969–987 (2014). https://doi.org/10.1002/CNM.2639

    Article  Google Scholar 

  88. Fregly, B.J.: Design of optimal treatments for neuromusculoskeletal disorders using patient-specific multibody dynamic models. Int. J. Comput. Vis. Biomech. 2(2), 145–155 (2009)

    Google Scholar 

  89. Falisse, A., Serrancolí, G., Dembia, C.L., Gillis, J., Jonkers, I., De Groote, F.: Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies. J. R. Soc. Interface 16(157), 20190402 (2019). https://doi.org/10.1098/rsif.2019.0402

    Article  Google Scholar 

  90. Brown, C., McPhee, J.: Predictive forward dynamic simulation of manual wheelchair propulsion on a rolling dynamometer. J. Biomech. Eng. 142(7), 071008 (2020). https://doi.org/10.1115/1.4046298

    Article  Google Scholar 

  91. Van Den Bogert, A.J., Blana, D., Heinrich, D.: Implicit methods for efficient musculoskeletal simulation and optimal control. In: Procedia IUTAM, vol. 2, pp. 297–316. Elsevier, Amsterdam (2011). https://doi.org/10.1016/j.piutam.2011.04.027

    Chapter  Google Scholar 

  92. De Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223–1230 (1996). https://doi.org/10.1016/0021-9290(95)00178-6

    Article  Google Scholar 

  93. Winter, D.A.: Biomechanics and Motor Control of Human Movement, vol. 7, 4th edn. Wiley, New York (2004). https://doi.org/10.1002/9780470549148

    Book  Google Scholar 

  94. Miller, R.H., Hamill, J.: Optimal footfall patterns for cost minimization in running. J. Biomech. 48(11), 2858–2864 (2015). https://doi.org/10.1016/j.jbiomech.2015.04.019

    Article  Google Scholar 

  95. Laschowski, B., McPhee, J.: Quantifying body segment parameters using dual-energy X-ray absorptiometry: a paralympic wheelchair curler case report. Proc. Eng. 147, 163–167 (2016). https://doi.org/10.1016/j.proeng.2016.06.207

    Article  Google Scholar 

  96. Valente, G., Crimi, G., Vanella, N., Schileo, E., Taddei, F.: NMSBUILDER: freeware to create subject-specific musculoskeletal models for OpenSim. Comput. Methods Programs Biomed. 152, 85–92 (2017). https://doi.org/10.1016/j.cmpb.2017.09.012

    Article  Google Scholar 

  97. Smith, C.R., Vignos, M.F., Lenhart, R.L., Kaiser, J., Thelen, D.G.: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement. J. Biomech. Eng. 138(2), 021017 (2016). https://doi.org/10.1115/1.4032464

    Article  Google Scholar 

  98. Bartels, W., Demol, J., Gelaude, F., Jonkers, I., Vander Sloten, J.: Computed tomography-based joint locations affect calculation of joint moments during gait when compared to scaling approaches. Comput. Methods Biomech. Biomed. Eng. 18(11), 1238–1251 (2015). https://doi.org/10.1080/10255842.2014.890186

    Article  Google Scholar 

  99. Sandoz, B., Laporte, S., Skalli, W., Mitton, D.: Subject-specific body segment parameters’ estimation using biplanar X-rays: a feasibility study. Comput. Methods Biomech. Biomed. Eng. 13(6), 649–654 (2010). https://doi.org/10.1080/10255841003717608

    Article  Google Scholar 

  100. Winby, C.R., Lloyd, D.G., Kirk, T.B.: Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters. J. Biomech. 41(8), 1682–1688 (2008). https://doi.org/10.1016/j.jbiomech.2008.03.008

    Article  Google Scholar 

  101. Modenese, L., Ceseracciu, E., Reggiani, M., Lloyd, D.G.: Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique. J. Biomech. 49(2), 141–148 (2016). https://doi.org/10.1016/j.jbiomech.2015.11.006

    Article  Google Scholar 

  102. Lloyd, D.G., Besier, T.F.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003). https://doi.org/10.1016/S0021-9290(03)00010-1

    Article  Google Scholar 

  103. Falisse, A., Afschrift, M., De Groote, F.: Modeling toes contributes to realistic stance knee mechanics in three-dimensional predictive simulations of walking. PLoS ONE 17(1 1), 1–16 (2022). https://doi.org/10.1371/journal.pone.0256311

    Article  Google Scholar 

  104. Brown, C., McNally, W., McPhee, J.: Optimal control of joint torques using direct collocation to maximize ball carry distance in a golf swing. Multibody Syst. Dyn. 50(3), 323–333 (2020). https://doi.org/10.1007/S11044-020-09734-0

    Article  MathSciNet  MATH  Google Scholar 

  105. Alonso, J., Romero, F., Pàmies-Vilà, R., Lugrís, U., Font-Llagunes, J.M., A simple approach to estimate muscle forces and orthosis actuation in powered assisted walking of spinal cord-injured subjects. Multibody Syst. Dyn. 28(1–2), 109–124 (2012). https://doi.org/10.1007/s11044-011-9284-5

    Article  MathSciNet  Google Scholar 

  106. Meyer, A.J., Patten, C., Fregly, B.J.: Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry. PLoS ONE 12(7), e0179698 (2017). https://doi.org/10.1371/JOURNAL.PONE.0179698

    Article  Google Scholar 

  107. Narici, M.V., Maffulli, N., Maganaris, C.N.: Ageing of human muscles and tendons. Disabil. Rehabil. 30(20–22), 1548–1554 (2009). https://doi.org/10.1080/09638280701831058

    Article  Google Scholar 

  108. Agyapong-Badu, S., Warner, M., Samuel, D., Stokes, M.: Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 62, 59–67 (2016). https://doi.org/10.1016/j.archger.2015.09.011

    Article  Google Scholar 

  109. Serrancolí, G., Kinney, A.L., Fregly, B.J., Font-Llagunes, J.M.: Neuromusculoskeletal model calibration significantly affects predicted knee contact forces for walking. J. Biomech. Eng. 138(8), 0810011 (2016). https://doi.org/10.1115/1.4033673

    Article  Google Scholar 

  110. De Groote, F., Blum, K.P., Horslen, B.C., Ting, L.H.: Interaction between muscle tone, short-range stiffness and increased sensory feedback gains explains key kinematic features of the pendulum test in spastic cerebral palsy: a simulation study. PLoS ONE 13(10), e0205763 (2018). https://doi.org/10.1371/journal.pone.0205763

    Article  Google Scholar 

  111. Falisse, A., Bar-On, L., Desloovere, K., Jonkers, I., De Groote, F.: A spasticity model based on feedback from muscle force explains muscle activity during passive stretches and gait in children with cerebral palsy. PLoS ONE 13(12), e0208811 (2018). https://doi.org/10.1371/journal.pone.0208811

    Article  Google Scholar 

  112. Raison, M., Detrembleur, C., Fisette, P., Samin, J.C.: Assessment of antagonistic muscle forces during forearm flexion/extension. Comput. Methods Appl. Sci. 23, 215–238 (2011). https://doi.org/10.1007/978-90-481-9971-6_11

    Article  Google Scholar 

  113. Pàmies-Vilà, R., Font-Llagunes, J.M., Lugrís, U., Cuadrado, J.: Parameter identification method for a three-dimensional foot-ground contact model. Mech. Mach. Theory 75, 107–116 (2014). https://doi.org/10.1016/j.mechmachtheory.2014.01.010

    Article  Google Scholar 

  114. Jackson, J.N., Hass, C.J., Fregly, B.J.: Development of a subject-specific foot-ground contact model for walking. J. Biomech. Eng. 138(9), 0910021 (2016). https://doi.org/10.1115/1.4034060

    Article  Google Scholar 

  115. Remy, C.D.: Integration of an Adaptive Ground Contact Model into the Dynamic Simulation of Gait. Ph.D. thesis, University of Wisconsin-Madison (2006)

  116. Lin, Y.C., Pandy, M.G.: Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation. J. Biomech. 59, 1–8 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.038

    Article  Google Scholar 

  117. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007). https://doi.org/10.1109/TBME.2007.901024

    Article  Google Scholar 

  118. Lee, L.F., Umberger, B.R.: Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. PeerJ 2016(1), e1638 (2016). https://doi.org/10.7717/peerj.1638

    Article  Google Scholar 

  119. Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 14(8), 1100–1111 (2006). https://doi.org/10.1016/j.simpat.2006.09.001

    Article  Google Scholar 

  120. Ghannadi, B., Mehrabi, N., Razavian, R.S., McPhee, J.: Nonlinear model predictive control of an upper extremity rehabilitation robot using a two-dimensional human-robot interaction model. In: IEEE International Conference on Intelligent Robots and Systems 2017-Septe, pp. 502–507 (2017). https://doi.org/10.1109/IROS.2017.8202200

    Chapter  Google Scholar 

  121. Ezati, M., Ghannadi, B., McPhee, J.: A review of simulation methods for human movement dynamics with emphasis on gait. Multibody Syst. Dyn. 47(3), 1–28 (2019). https://doi.org/10.1007/s11044-019-09685-1

    Article  MathSciNet  MATH  Google Scholar 

  122. Ackermann, M., Van den Bogert, A.J.: Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy. J. Biomech. 45(7), 1293–1298 (2012). https://doi.org/10.1016/j.jbiomech.2012.01.029

    Article  Google Scholar 

  123. Umberger, B.R., Miller, R.H.: Optimal control modeling of human movement. In: Handbook of Human Motion, pp. 1–22. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-30808-1_177-1

    Chapter  Google Scholar 

  124. Pandy, M.G., Anderson, F.C., Hull, D.G.: A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J. Biomech. Eng. 114(4), 450–460 (1992). https://doi.org/10.1115/1.2894094

    Article  Google Scholar 

  125. Chung, H.J., Xiang, Y., Mathai, A., Rahmatalla, S., Kim, J., Marler, T., Beck, S., Yang, J., Arora, J., Abdel-Malek, K., Obusek, J.: A robust formulation for prediction of human running. In: SAE Technical Papers. SAE International (2007). https://doi.org/10.4271/2007-01-2490

    Chapter  Google Scholar 

  126. Koelewijn, A.D., van den Bogert, A.J.: A solution method for predictive simulations in a stochastic environment. J. Biomech. 104, 109759 (2020). https://doi.org/10.1016/j.jbiomech.2020.109759

    Article  Google Scholar 

  127. Menegaldo, L.L., Fleury d.T.A., Weber, H.I.: A ’cheap’ optimal control approach to estimate muscle forces in musculoskeletal systems. J. Biomech. 39(10), 1787–1795 (2006). https://doi.org/10.1016/j.jbiomech.2005.05.029

    Article  Google Scholar 

  128. Geyer, H., Herr, H.: A Muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010). https://doi.org/10.1109/TNSRE.2010.2047592

    Article  Google Scholar 

  129. Song, S., Geyer, H.: Evaluation of a neuromechanical walking control model using disturbance experiments. Front. Comput. Neurosci. 11, 15 (2017). https://doi.org/10.3389/fncom.2017.00015

    Article  Google Scholar 

  130. Nasr, A., Hashemi, A., McPhee, J.: Model-based mid-level regulation for assist-as-needed hierarchical control of wearable robots: a computational study of human-robot adaptation. Robotics 11(1), 20 (2022). https://doi.org/10.3390/ROBOTICS11010020

    Article  Google Scholar 

  131. Ezati, M., McPhee, J.: Child gait predictive dynamic simulation. In: ECCOMAS Thematic Conference on Multibody Dynamics (2021)

    Google Scholar 

  132. Nguyen, V.Q., Johnson, R.T., Sup, F.C., Umberger, B.R.: Bilevel optimization for cost function determination in dynamic simulation of human gait. IEEE Trans. Neural Syst. Rehabil. Eng. 27(7), 1426–1435 (2019). https://doi.org/10.1109/TNSRE.2019.2922942

    Article  Google Scholar 

  133. Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming, 3rd edn. SIAM, Philadelphia, PA, USA (2020). https://doi.org/10.1137/1.9781611976199

    Book  MATH  Google Scholar 

  134. De Groote, F., Kinney, A.L., Rao, A.V., Fregly, B.J.: Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44(10), 2922–2936 (2016). https://doi.org/10.1007/s10439-016-1591-9

    Article  Google Scholar 

  135. Rasmussen, J., Damsgaard, M., Voigt, M.: Muscle recruitment by the min/max criterion — a comparative numerical study. J. Biomech. 34(3), 409–415 (2001). https://doi.org/10.1016/S0021-9290(00)00191-3

    Article  Google Scholar 

  136. Norman-Gerum, V., McPhee, J.: Constrained dynamic optimization of sit-to-stand motion driven by Bézier curves. J. Biomech. Eng. 140(12), 1–7 (2018). https://doi.org/10.1115/1.4041527

    Article  Google Scholar 

  137. Yan, J.H., Hinrichs, R.N., Payne, V.G., Thomas, J.R.: Normalized jerk: a measure to capture developmental characteristics of Young girls’ overarm throwing. J. Appl. Biomech. 16(2), 196–203 (2000). https://doi.org/10.1123/JAB.16.2.196

    Article  Google Scholar 

  138. Hreljac, A.: Stride smoothness evaluation of runners and other athletes. Gait Posture 11(3), 199–206 (2000). https://doi.org/10.1016/S0966-6362(00)00045-X

    Article  Google Scholar 

  139. Mainprice, J., Hayne, R., Berenson, D.: Predicting human reaching motion in collaborative tasks using inverse optimal control and iterative re-planning. In: Proceedings – IEEE International Conference on Robotics and Automation 2015-June(June), pp. 885–892 (2015). https://doi.org/10.1109/ICRA.2015.7139282

    Chapter  Google Scholar 

  140. Mombaur, K., Truong, A., Laumond, J.P.: From human to humanoid locomotion-an inverse optimal control approach. Auton. Robots 28(3), 369–383 (2010). https://doi.org/10.1007/s10514-009-9170-7

    Article  Google Scholar 

  141. Clever, D., Mombaur, K.: An inverse optimal control approach for the transfer of human walking motions in constrained environment to humanoid robots. Robotics: Science and Systems 12 (2016). https://doi.org/10.15607/rss.2016.xii.005

  142. Mombaur, K.: Optimal control for applications in medical and rehabilitation technology: challenges and solutions. In: Springer Optimization and Its Applications, vol. 109, pp. 103–145. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-30785-5_5

    Chapter  Google Scholar 

  143. Sha, D., Thomas, J.S.: An optimisation-based model for full-body upright reaching movements. Comput. Methods Biomech. Biomed. Eng. 18(8), 847–860 (2015). https://doi.org/10.1080/10255842.2013.850675

    Article  Google Scholar 

  144. Petrella, A., Rasmussen, J., Al-Munajjed, A., Damsgaard, M., Lund, M., Kiis, A.: How good is good enough? Lessons in musculoskeletal model validation with the anybody modeling system. J. Med. Devices, Trans. ASME 7(4), 1–2 (2013). https://doi.org/10.1115/1.4025766

    Article  Google Scholar 

  145. Killen, B.A., Falisse, A., De Groote, F., Jonkers, I.: In silico-enhanced treatment and rehabilitation planning for patients with musculoskeletal disorders: can musculoskeletal modelling and dynamic simulations really impact current clinical practice? Appl. Sci. 10(20), 1–22 (2020). https://doi.org/10.3390/app10207255

    Article  Google Scholar 

  146. Fregly, B.J., Besier, T.F., Lloyd, D.G., Delp, S.L., Banks, S.A., Pandy, M.G., D’Lima, D.D.: Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30(4), 503–513 (2012). https://doi.org/10.1002/jor.22023

    Article  Google Scholar 

  147. Taylor, W.R., Schütz, P., Bergmann, G., List, R., Postolka, B., Hitz, M., Dymke, J., Damm, P., Duda, G., Gerber, H., Schwachmeyer, V., Hosseini Nasab, S.H., Trepczynski, A., Kutzner, I.: A comprehensive assessment of the musculoskeletal system: the CAMS-Knee data set. J. Biomech. 65, 32–39 (2017). https://doi.org/10.1016/j.jbiomech.2017.09.022

    Article  Google Scholar 

  148. Martin, J.A., Brandon, S.C.E., Keuler, E.M., Hermus, J.R., Ehlers, A.C., Segalman, D.J., Allen, M.S., Thelen, D.G.: Gauging force by tapping tendons. Nat. Commun. 9(1), 1592 (2018). https://doi.org/10.1038/s41467-018-03797-6

    Article  Google Scholar 

  149. Sartori, M., Llyod, D.G., Farina, D.: Neural data-driven musculoskeletal modeling for personalized neurorehabilitation technologies. IEEE Trans. Biomed. Eng. 63(5), 879–893 (2016). https://doi.org/10.1109/TBME.2016.2538296

    Article  Google Scholar 

  150. Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Math. Program. Comput. 11(1), 1–36 (2019). https://doi.org/10.1007/s12532-018-0139-4

    Article  MathSciNet  MATH  Google Scholar 

  151. Geijtenbeek, T.: SCONE: open source software for predictive simulation of biological motion. J. Open Sour. Softw. 4(38), 1421 (2019). https://doi.org/10.21105/joss.01421

    Article  Google Scholar 

  152. Michaud, B., Bailly, F., Charbonneau, E., Ceglia, A., Sanchez, L., Begon, M.: Bioptim, a python framework for musculoskeletal optimal control in biomechanics. IEEE Trans. Syst. Man Cybern. Syst. (2022). https://doi.org/10.1109/TSMC.2022.3183831

    Article  Google Scholar 

  153. Seth, A., Sherman, M.A., Reinbolt, J.A., Delp, S.L.: OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. In: Procedia IUTAM, vol. 2, pp. 212–232. Elsevier, Amsterdam (2011). https://doi.org/10.1016/j.piutam.2011.04.021

    Chapter  Google Scholar 

  154. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  MATH  Google Scholar 

  155. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002). https://doi.org/10.1137/S1052623499350013

    Article  MathSciNet  MATH  Google Scholar 

  156. Leineweber, D.B., Schäfer, A., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization part II: software aspects and applications. Comput. Chem. Eng. 27(2), 167–174 (2003). https://doi.org/10.1016/S0098-1354(02)00195-3

    Article  Google Scholar 

  157. Patterson, M.A., Rao, A.V.: GPOPS – II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Transactions on Mathematical Software 41(1) (2014). https://doi.org/10.1145/2558904

Download references

Funding

This work was conducted with support from the Grant RTI2018-097290-B-C33 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”.

Author information

Authors and Affiliations

Authors

Contributions

J.M., J.F-L., M.E. and M.F-N. conceived and designed the review content. All authors read and selected the references included in the review. M.F-N., A.N., M.E. and P.B. wrote the first version of Sections 2 and 3. J.M. and J.F-L. revised the manuscript and wrote the first version of Introduction and Conclusions. All authors reviewed the manuscript.

Corresponding author

Correspondence to Míriam Febrer-Nafría.

Ethics declarations

Competing interests

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(XLSX 227 kB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Febrer-Nafría, M., Nasr, A., Ezati, M. et al. Predictive multibody dynamic simulation of human neuromusculoskeletal systems: a review. Multibody Syst Dyn 58, 299–339 (2023). https://doi.org/10.1007/s11044-022-09852-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-022-09852-x

Keywords

Navigation