Skip to main content

Optimal Control Modeling of Human Movement

  • Reference work entry
  • First Online:
Handbook of Human Motion

Abstract

Optimal control theory is a common paradigm employed in many fields of science and engineering. This chapter provide an overview of optimal control theory applied specifically to studying the biomechanics and control of human movement. In this approach, the human neuromusculoskeletal system is modeled as a system of ordinary differential equations subject to controls that influence the behavior of the system. Techniques from control theory are used to find the optimal controls that cause the model to behave in a manner that minimizes or maximizes a user-defined performance criterion. The performance criterion, along with any task requirements, mathematically define the goal of the movement to be simulated. This framework has proven to be both powerful and flexible, leading to fundamental insights on topics ranging from the biomechanical function of individual muscles in locomotion to the manner in which the nervous system controls limb movements in reaching tasks. Many of the basic concepts that are introduced in the first half of this chapter are then demonstrated via a detailed example of the optimal control of human walking. Selected contemporary topics that hold promise for the future are discussed, as are challenges with the use of optimal control theory. The chapter concludes with perspectives on future developments in the application of optimal control theory to human movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann M, van den Bogert A (2010) Optimality principles for model-based prediction of human gait. J Biomech 43:1055–1060

    Article  Google Scholar 

  • Alexander R (2002) Energetics and optimization of human walking and running. Am J Hum Biol 14:641–648

    Article  Google Scholar 

  • Anderson F, Ziegler J, Pandy M, Whalen R (1995) Application of high-performance computing to numerical simulation of human movement. J Biomech Eng 117:155–157

    Article  Google Scholar 

  • Betts J (2010) Practical methods for optimal control and estimation using nonlinear programming. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Bobbert M, van Soest A (1994) Effects of muscle strengthening on vertical jump height: a simulation study. Med Sci Sports Exerc 26:1012–1020

    Article  Google Scholar 

  • Bryson A, Ho Y (1975) Applied optimal control. Wiley, New York

    Google Scholar 

  • Celik H, Piazza S (2013) Simulation of aperiodic bipedal sprinting. J Biomech Eng 135:81008

    Article  Google Scholar 

  • Chao E, Rim K (1973) Application of optimization principles in determining the applied moments in human leg joints during gait. J Biomech 6:497–510

    Article  Google Scholar 

  • Chow C, Jacobson D (1971) Studies of human locomotion via optimal programming. Math Biosci 10:239–306

    Article  MATH  Google Scholar 

  • Davy D, Audu M (1987) A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J Biomech 20:187–201

    Article  Google Scholar 

  • Fernandez J et al (2016) Multiscale musculoskeletal modelling, data-model fusion and electromyography-informed modelling. Interface Focus 6:84

    Article  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    Article  Google Scholar 

  • Gerritsen K, van den Bogert A, Hulliger M, Zernicke R (1998) Intrinsic muscle properties facilitate locomotor control – a computer simulation study. Mot Control 2:206–220

    Article  Google Scholar 

  • Ghosh T, Boykin W (1976) Analytic determination of an optimal human motion. J Optim Theor Appl 19:327–346

    Article  MathSciNet  MATH  Google Scholar 

  • Gill P, Murray W, Saunders M (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47:99–131

    Article  MathSciNet  MATH  Google Scholar 

  • Handford M, Srinivasan M (2016) Robotic lower limb prosthesis design through simultaneous computer optimizations of human and prosthesis costs. Sci Rep 6:19983

    Article  Google Scholar 

  • Hatze H (1976) The complete optimization of a human motion. Math Biosci 28:99–135

    Article  MathSciNet  MATH  Google Scholar 

  • Hatze H (1983) Computerized optimization of sports motions: an overview of possibilities, methods and recent developments. J Sports Sci 1:3–12

    Article  Google Scholar 

  • Kaplan M, Heegaard J (2001) Predictive algorithms for neuromuscular control of human locomotion. J Biomech 34:1077–1083

    Article  Google Scholar 

  • Kirk D (1970) Optimal control theory. Prentice Hall, Inc., Englewood Cliffs

    Google Scholar 

  • Koelewijn A, van den Bogert A (2016) Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations. Gait Posture 49:219–225

    Article  Google Scholar 

  • Kuo A (1995) An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng 42:87–101

    Article  Google Scholar 

  • Lawrence E et al (2015) Outcome measures for hand function naturally reveal three latent domains in older adults: strength, coordinated upper extremity function, and sensorimotor processing. Front Aging Neurosci 7:108

    Article  Google Scholar 

  • Lotov A, Miettinen K (2008) Visualizing the pareto frontier. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer-Verlag, Berlin, pp 213–243

    Chapter  Google Scholar 

  • McLean S, Su A, van den Bogert A (2003) Development and validation of a 3-D model to predict knee joint loading during dynamic movement. J Biomech Eng 125:864–874

    Article  Google Scholar 

  • Miller R, Hamill J (2015) Optimal footfall patterns for cost minimization in running. J Biomech 48:2858–2864

    Article  Google Scholar 

  • Miller R, Umberger B, Hamill J, Caldwell G (2012) Evaluation of the minimum energy hypothesis and other potential optimality criteria for human running. Proc R Soc B 279:1498–1505

    Article  Google Scholar 

  • Neptune R, Kautz S, Zajac F (2001) Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 34:1387–1398

    Article  Google Scholar 

  • Ogihara N, Yamazaki N (2001) Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol Cybern 84:1–11

    Article  Google Scholar 

  • Pandy M, Anderson F, Hull D (1992) A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J Biomech Eng 114:450–460

    Article  Google Scholar 

  • Pandy M, Garner B, Anderson F (1995) Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. J Biomech Eng 117:15–26

    Article  Google Scholar 

  • Porsa S, Lin Y, Pandy M (2015) Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim. Ann Biomed Eng 44:2542–2557

    Article  Google Scholar 

  • Scott S (2012) The computational and neural basis of voluntary motor control and planning. Trends Cogn Sci 16:541–549

    Article  Google Scholar 

  • Swan G (1984) Applications of optimal control theory in biomedicine. Marcel Dekker, Inc., New York

    MATH  Google Scholar 

  • Taylor G, Thomas A (2014) Evolutionary biomechanics: selection, phylogeny, and constraint. Oxford University Press, Oxford

    Book  Google Scholar 

  • Thelen D, Anderson F (2006) Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech 39:1107–1115

    Article  Google Scholar 

  • Todorov E (2007) Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data. IEEE Trans Biomed Eng 54:1927–1939

    Article  Google Scholar 

  • Todorov E, Jordan M (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  Google Scholar 

  • Umberger B (2010) Stance and swing phase costs in human walking. J R Soc Interface 7:1329–1340

    Article  Google Scholar 

  • Umberger B, Caldwell G (2014) Musculoskeletal modeling. In: Robertson D et al (eds) Research methods in biomechanics. Human Kinetics, Champaign, pp 247–276

    Google Scholar 

  • Valero-Cuevas F et al (2009) Computational models for neuromuscular function. IEEE Rev Biomed Eng 2:110–135

    Article  Google Scholar 

  • Wächter A, Biegler L (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106:25–57

    Article  MathSciNet  MATH  Google Scholar 

  • Zajac F, Gordon M (1989) Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev 17:187–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Umberger .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Umberger, B.R., Miller, R.H. (2018). Optimal Control Modeling of Human Movement. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_177

Download citation

Publish with us

Policies and ethics