Skip to main content
Log in

Predictive dynamic simulation of Olympic track cycling standing start using direct collocation optimal control

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Much of the previous research on modeling and simulation of cycling has focused on seated pedaling, modeling the crank load with an effective resistive torque and inertia. This study focuses on modeling standing starts, a component of certain track cycling events in which the cyclist starts from rest and attempts to accelerate to top speed as quickly as possible. A ten degree-of-freedom, two-legged cyclist and bicycle model was developed and utilized for predictive dynamic simulations of standing starts. Experimental data including crank torque, cadence, and joint kinematics were collected for a member of the Canadian Olympic team performing standing starts on the track. Using direct collocation optimal control to maximize the simulated distance traveled, the predictive simulations aligned well with the experiments and replicated key aspects of the standing start technique such as the drive and reset. The model’s use in “What if?” scenarios presents interesting possibilities for investigating optimal techniques and equipment in cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Janssen, I., Cornelissen, J.: Pedal forces during the BMX and track sprint cycling start. In: Proceedings of the 35th Conference of the International Society of Biomechanics in Sports, vol. 35, pp. 793–796 (2017). No. 1

    Google Scholar 

  2. Padulo, J., Laffaye, G., Bertucci, W., Chaouachi, A., Viggiano, D.: Optimisation of starting conditions in track cycling. Sport Sci. Health 10(3), 189–198 (2014)

    Article  Google Scholar 

  3. Padulo, J., Ardigò, L.P., Milic, M., Powell, D.W.: Electromyographic analysis of riding posture during the bicycling start moment. Motriz: J. Phys. Educ. 22(4), 237–242 (2016)

    Google Scholar 

  4. Barratt, P.: SRM torque analysis of standing starts in track cycling. In: Engineering of Sport 7, vol. 1, p. 85 (2008)

    Google Scholar 

  5. Kaplan, M.L., Heegaard, J.H.: Predictive algorithms for neuromuscular control of human locomotion. J. Biomech. 34(8), 1077–1083 (2001)

    Article  Google Scholar 

  6. Thelen, D.G., Anderson, F.C., Delp, S.L.: Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36(3), 321–328 (2003)

    Article  Google Scholar 

  7. Kautz, S., Hull, M.: Dynamic optimization analysis for equipment setup problems in endurance cycling. J. Biomech. 28(11), 1391–1401 (1995)

    Article  Google Scholar 

  8. Neptune, R.R., Hull, M.L.: Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. J. Biomech. Eng. 120(3), 334–341 (1998)

    Article  Google Scholar 

  9. Redfield, R., Hull, M.L.: Prediction of pedal forces in bicycling using optimization methods. J. Biomech. 19(7), 523–540 (1986)

    Article  Google Scholar 

  10. Millard, M., Sreenivasa, M., Mombaur, K.: In: Predicting the Motions and Forces of Wearable Robotic Systems Using Optimal Control. Frontiers in Robotics and AI, vol. 4, pp. 1–12 (2017). August

    Google Scholar 

  11. Zignoli, A., Biral, F., Pellegrini, B., Jinha, A., Herzog, W., Schena, F.: An optimal control solution to the predictive dynamics of cycling. Sport Sci. Health 13(2), 1–13 (2017)

    Article  Google Scholar 

  12. McNally, W., McPhee, J.: Dynamic optimization of the golf swing using a six degree-of-freedom biomechanical model. Proceedings 2(6), 243 (2018)

    Article  Google Scholar 

  13. Yeadon, M.R., King, M.A.: Evaluation of a torque driven simulation model of tumbling. J. Appl. Biomech. 18, 195–206 (2002)

    Article  Google Scholar 

  14. Raasch, C.C., Zajac, F.E., Ma, B., Levine, W.S.: Muscle coordination of maximum-speed pedaling. J. Biomech. 26(96) (1993)

  15. Raasch, C.C., Zajac, F.E.: Locomotor strategy for pedaling: muscle groups and biomechanical functions. J. Neurophysiol. 82(2), 515–525 (1999)

    Article  Google Scholar 

  16. Fregly, B.J., Zajac, F.E.: A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling. J. Biomech. 29(1), 81–90 (1996)

    Article  Google Scholar 

  17. Bobbert, M.F., Casius, L.J., Van Soest, A.J.: The relationship between pedal force and crank angular velocity in sprint cycling. Med. Sci. Sports Exerc. 48(5), 869–878 (2016)

    Article  Google Scholar 

  18. van Soest, A.J.K., Casius, L.J.R.: Which factors determine the optimal pedaling rate in spring cycling? In: Medicine and Science in Sports and Exercise, pp. 1927–1934 (2000)

    Google Scholar 

  19. Farahani, S.D., Bertucci, W., Andersen, M.S., de Zee, M., Rasmussen, J.: Prediction of crank torque and pedal angle profiles during pedaling movements by biomechanical optimization. Struct. Multidiscip. Optim. 51(1), 251–266 (2015)

    Article  Google Scholar 

  20. Lai, A.K., Arnold, A.S., Biewener, A.A., Dick, T.J., Wakeling, J.M.: Does a two-element muscle model offer advantages when estimating ankle plantar flexor forces during human cycling? J. Biomech. 68, 6–13 (2017)

    Article  Google Scholar 

  21. Schwab, A.L., Meijaard, J.P.: A review on bicycle dynamics and rider control. Veh. Syst. Dyn. 51(7), 1059–1090 (2013)

    Article  Google Scholar 

  22. Good, C., McPhee, J.: Dynamics of mountain bicycles with rear suspensions. Sports Eng. 3(iv), 49–55 (2000)

    Article  Google Scholar 

  23. Wang, E.L.: A dynamic system model of an off-road cyclist. J. Biomech. Eng. 119, 248–253 (1997)

    Article  Google Scholar 

  24. Pacejka, H.B.: Tire and Vehicle Dynamics, 2nd edn. (2005)

    Google Scholar 

  25. Bulsink, V.E., Doria, A., van de Belt, D., Koopman, B.: The effect of tyre and rider properties on the stability of a bicycle. Adv. Mech. Eng. 7(12), 1–19 (2015)

    Article  Google Scholar 

  26. Doria, A., Tognazzo, M., Cusimano, G., Bulsink, V., Cooke, A., Koopman, B.: Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics. Veh. Syst. Dyn. 51(3), 405–420 (2012)

    Article  Google Scholar 

  27. Lukes, R., Hart, J., Haake, S.: An analytical model for track cycling. Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol. 226(2), 143–151 (2012)

    Google Scholar 

  28. Bierman, J.: Tire Test—Vittoria Corsa Speed (tubular) (2017)

  29. Mavros, G.: A study on the influences of tyre lags and suspension damping on the instantaneous response of a vehicle. Proc. Inst. Mech. Eng., Part D, J. Automob. Eng. 222(4), 485–498 (2008)

    Article  Google Scholar 

  30. de Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  31. Anderson, D.E., Madigan, M.L., Nussbaum, M.A.: Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J. Biomech. 40(14), 3105–3113 (2007)

    Article  Google Scholar 

  32. Kordi, M., Goodall, S., Barratt, P., Rowley, N., Leeder, J., Howatson, G.: Relation between peak power output in sprint cycling and maximum voluntary isometric torque production. J. Electromyogr. Kinesiol. 35, 95–99 (2017)

    Article  Google Scholar 

  33. Millard, M., Uchida, T., Seth, A., Delp, S.L.: Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135(2), 021005 (2013)

    Article  Google Scholar 

  34. Riener, R., Edrich, T.: Identification of passive elastic joint moments in the lower extremities. J. Biomech. 32(5), 539–544 (1999)

    Article  Google Scholar 

  35. van Soest, A., Bobbert, M.: The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69(3), 195–204 (1993)

    Article  Google Scholar 

  36. Garner, B.A., Pandy, M.G.: Musculoskeletal model of the upper limb based on the visible human male dataset. Comput. Methods Biomech. Biomed. Eng. 4(2), 93–126 (2001)

    Article  Google Scholar 

  37. Jansen, C., McPhee, J.: Predictive dynamic simulation of seated start-up cycling using Olympic cyclist and bicycle models. Proceedings 2(6), 220 (2018)

    Article  Google Scholar 

  38. Jansen, C.: Predictive Dynamic Simulation of Cycling Using Olympic Cyclist and Bicycle Models. Master’s thesis, University of Waterloo (2018)

  39. Rao, A.V., Benson, D.a., Darby, C., Patterson, M.a., Francolin, C., Sanders, I., Huntington, G.T.: GPOPS–II: a MATLAB software for solving multiple-phase optimal control problems using hp–adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 37(2), 1–39 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded by McPhee’s Canada Research Chair in System Dynamics. Additional thanks to Canadian Sport Institute Ontario, Mike Patton and Will George of Cycling Canada, and the members of the Canadian track cycling team for their support and participation in experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor Jansen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen, C., McPhee, J. Predictive dynamic simulation of Olympic track cycling standing start using direct collocation optimal control. Multibody Syst Dyn 49, 53–70 (2020). https://doi.org/10.1007/s11044-020-09723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09723-3

Keywords

Navigation