Skip to main content
Log in

Modeling of spherical robots rolling on generic surfaces

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the motion of a spherical robot rolling on a generic surface is considered. The motion equations are derived in matrix form using a Lagrangian approach, and quaternions are used to parametrize attitude. Focus is placed on a general formulation of the problem that facilitates the integration of the holonomic and nonholonomic constraints into the motion equations in a straightforward manner. The motion equations capture the nonholonomic nature of rolling without slipping, the contact requirement between the spherical rover and the generic surface, an additional constraint associated with an energy-harvesting pendulum, and the quaternion unit-length constraints. Numerical simulations involving Martian tumbleweed rovers are performed on complex three-dimensional surfaces resembling Martian craters and wave fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bhattacharya, S., Agrawal, S.K.: Spherical rolling robot: a design and motion planning studies. IEEE Trans. Robot. Autom. 16(6), 835–839 (2000)

    Article  Google Scholar 

  2. Joshi, V.A., Banavar, R., Hippalgaonkar, R.: Design and analysis of a spherical mobile robot. Mech. Mach. Theory 45, 130–136 (2010)

    Article  MATH  Google Scholar 

  3. Tomik, F., Nudehi, S., Flynn, L.L., Mukherjee, R.: Design, Fabrication and control of spherobot: a spherical mobile robot. J. Intell. Robot. Syst. 67(2), 117–131 (2012)

    Article  Google Scholar 

  4. Yu, T., Sun, H., Jia, Q., Zhang, Y., Zhao, W.: Stabilization and control of a spherical robot on an inclined plane. Res. J. Appl. Sci. Eng. Technol. 5(6), 2289–2296 (2013)

    Google Scholar 

  5. Chase, R., Pandya, A.: A review of active mechanical driving principles of spherical robots. Robotics 1(1), 3–23 (2012)

    Article  Google Scholar 

  6. Koshiyama, A., Yamafuji, K.: Design and control of an all-direction steering type mobile robot. Int. J. Robot. Res. 12(5), 411–419 (1993)

    Article  Google Scholar 

  7. Schroll, G.C.: Dynamic model of a spherical robot from first principles. Master’s thesis, Colorado State University (2010)

  8. Forbes, J.R., Barfoot, T.D., Damaren, C.J.: Dynamic modeling and stability analysis of a power-generating tumbleweed rover. Multibody Syst. Dyn. 24(4), 413–439 (2010)

    Article  MATH  Google Scholar 

  9. Kayacan, E., Bayraktaroglu, Z.Y., Saeys, W.: Modeling and control of a spherical rolling robot: a decoupled dynamics approach. Robotica 30(4), 671–680 (2012)

    Article  Google Scholar 

  10. Balandin, D.V., Komarov, M.A., Osipov, G.V.: A motion control for a spherical robot with pendulum drive. J. Comput. Syst. Sci. Int. 52(4), 650–663 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hughes, P.C.: Spacecraft Attitude Dynamics, 2nd edn. Dover, Mineola (2004)

    Google Scholar 

  12. Borisov, A.V., Mamaev, I.S., Kilin, A.A.: The rolling motion of a ball on a surface. New integrals and hierarchy of dynamics. Regul. Chaotic Dyn. 7(2), 201–219 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Dynamics of rolling disk. Regul. Chaotic Dyn. 8(2), 201–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Campos, l., Fernández-Chapou, J.L., Salas-Brito, A.L., Vargas, C.A.: A sphere rolling on the inside surface of a cone. Eur. J. Phys. 27(3), 567–576 (2006)

    Article  MATH  Google Scholar 

  15. Borisov, A.V., Fedorov, Y.N., Mamaev, I.S.: Chaplygin ball over a fixed sphere: an explicit integration. Regul. Chaotic Dyn. 13(6), 557–571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Borisov, A.V., Kilin, A.A., Mamaev, I.S.: Stability of steady rotations in the nonholonomic routh problem. Regul. Chaotic Dyn. 13(4), 239–249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Udwadia, F.E., Di Massa, G.: Sphere rolling on a moving surface: application of the fundamental equation of constrained motion. Simul. Model. Pract. Theory 19(4), 1118–1138 (2011)

    Article  Google Scholar 

  18. Hartl, A.E., Mazzoleni, A.P.: Parametric study of spherical rovers crossing a valley. J. Guid. Control Dyn. 31(3), 775–779 (2008)

    Article  Google Scholar 

  19. Behar, A., Carsey, F., Matthews, J., Jones, J.: An antarctic deployment of the NASA/JPL tumbleweed polar rover. In: Robotics: Trends, Principles, and Applications—Proceedings of the Sixth Biannual World Automation Congress, Isora, Seville, Spain, June 28–July 1 (2004)

    Google Scholar 

  20. Kuhlman, K.R., Behar, A.E., Jones, J., Boston, P., Kuhlman, K.R., Behar, A., Jones, J., Boston, P., Antol, J., Hajos, G., Kelliher, W., Coleman, M., Crawford, R., Rothschild, L., Buehler, M., Bearman, G., Wilson, D.W.: Tumbleweed: a new paradigm for surveying mars for in situ resources. In: Proceedings of the 12th International Conference on Engineering, Science, Construction, and Operations in Challenging Environments – Earth and Space, Honolulu, HI, United States, March 14–17, pp. 1502–1512 (2010)

    Google Scholar 

  21. Hartl, A.E., Mazzoleni, A.P.: Dynamic modeling of a wind-driven tumbleweed rover including atmospheric effects. J. Spacecr. Rockets 47(3), 493–502 (2010)

    Article  Google Scholar 

  22. Hogan, F.R., Forbes, J.R.: Rolling stability of a power-generating tumbleweed rover. J. Spacecr. Rockets (2014). doi:10.2514/1.A32883

    Google Scholar 

  23. Basic, G.: Power-scavenging tumbleweed rover. Master’s thesis, University of Toronto (2010)

  24. Angeles, J., Saha, S.K.: Dynamics of nonholonomic mechanical systems using a natural orthogonal complement. J. Appl. Mech. 58(1), 238–243 (1991)

    Article  MATH  Google Scholar 

  25. Koteswara Rao, A.B., Saha, S.K., Rao, P.V.: Dynamics modelling of hexaslides using the decoupled natural orthogonal complement matrices. Multibody Syst. Dyn. 15(2), 159–180 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3, 011004 (2008)

    Article  Google Scholar 

  27. Akbarzadeh, A., Enferadi, J., Sharifnia, M.: Dynamics analysis of a 3-RRP spherical parallel manipulator using the natural orthogonal complement. Multibody Syst. Dyn. 29(4), 361–380 (2013)

    Article  MathSciNet  Google Scholar 

  28. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 3rd edn. Springer, New York (2007)

    Book  Google Scholar 

  29. Rao, A.V.: Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  30. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2009)

    MATH  Google Scholar 

  31. Forbes, J.R.: Identities for deriving equations of motion using constrained attitude parametrizations. J. Guid. Control Dyn. 37(4), 1283–1289 (2014)

    Article  Google Scholar 

  32. de Ruiter, A.H.J., Forbes, J.R.: General identities for parameterizations of SO(3) with applications. J. Appl. Mech. 81(7), 071007 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Robert Hogan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogan, F.R., Forbes, J.R. Modeling of spherical robots rolling on generic surfaces. Multibody Syst Dyn 35, 91–109 (2015). https://doi.org/10.1007/s11044-014-9438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9438-3

Keywords

Navigation