Skip to main content
Log in

Spherical robot of combined type: Dynamics and control

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with free and controlled motions of a spherical robot of combined type moving by displacing the center of mass and by changing the internal gyrostatic momentum. Equations of motion for the nonholonomic model are obtained and their first integrals are found. Fixed points of the reduced system are found in the absence of control actions. It is shown that they correspond to the motion of the spherical robot in a straight line and in a circle. A control algorithm for the motion of the spherical robot along an arbitrary trajectory is presented. A set of elementary maneuvers (gaits) is obtained which allow one to transfer the spherical robot from any initial point to any end point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halme, A., Schönberg, T., and Wang, Y., Motion Control of a Spherical Mobile Robot, in Proc. of the 4th IEEE Internat. Workshop on Advanced Motion Control (Mie, Japan, 1996): Vol. 1, pp. 259–264.

  2. Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 1972.

  3. Bizyaev, I. A., Nonintegrability and Obstructions to the Hamiltonianization of a Nonholonomic Chaplygin Top, Dokl. Math., 2014, vol. 90, no. 2, pp. 631–634; see also: Dokl. Akad. Nauk, 2014, vol. 458, no. 4, pp. 398–401.

    Article  MathSciNet  MATH  Google Scholar 

  4. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Generalized Chaplygin’s Transformation and Explicit Integration of a System with a Spherical Support, Regul. Chaotic Dyn., 2012, vol. 17, no. 2, pp. 170–190.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 571–579.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bizyaev, I.A., Bolsinov, A.V., Borisov, A.V., and Mamaev, I. S., Topology and Bifurcations in Nonholonomic Mechanics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 10, 21 pp.

    Google Scholar 

  7. Borisov, A.V. and Mamaev, I. S., Isomorphism and Hamilton Representation of Some Nonholonomic Systems, Siberian Math. J., 2007, vol. 48, no. 1, pp. 26–36; see also: Sibirsk. Mat. Zh., 2007, vol. 48, no. 1, pp. 33–45.

    Article  MathSciNet  Google Scholar 

  8. Borisov, A. V. and Mamaev, I. S., Rolling of a Non-homogeneous Ball Over a Sphere Without Slipping and Twisting, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 153–159.

    Article  MathSciNet  MATH  Google Scholar 

  9. Borisov, A. V., Fedorov Yu.N., and Mamaev, I. S., Chaplygin Ball over a Fixed Sphere: an Explicit Integration, Regul. Chaotic Dyn., 2008, vol. 13, no. 6, pp. 557–571.

    Article  MathSciNet  MATH  Google Scholar 

  10. Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics-Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.

    Article  Google Scholar 

  11. Borisov, A. V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.

    Article  MathSciNet  MATH  Google Scholar 

  12. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., New Effects in Dynamics of Rattlebacks, Dokl. Phys., 2006, vol. 51, no. 5, pp. 272–275; see also: Dokl. Akad. Nauk, 2006, vol. 408, no. 2, pp. 192–195.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chase, R. and Pandya, A., A Review of Active Mechanical Driving Principles of Spherical Robots, Robotics, 2012, vol. 1, no. 1, pp. 3–23.

    Article  Google Scholar 

  14. Crossley, V.A., A Literature Review on the Design of Spherical Rolling Robots, Pittsburgh,Pa., 2006. 6 pp.

    Google Scholar 

  15. Karavaev, Yu. L. and Kilin, A.A., The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform, Regul. Chaotic Dyn., 2015, vol. 20, no. 2, pp. 134–152.

    Article  MathSciNet  Google Scholar 

  16. Ylikorpi, T. and Suomela, J., Ball-Shaped Robots, in Climbing and Walking Robots: Towards New Applications, H. Zhang (Ed.), Vienna: InTech, 2007, pp. 235–256.

    Google Scholar 

  17. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 258–272.

    Article  MathSciNet  MATH  Google Scholar 

  18. Svinin, M., Bai, Y., and Yamamoto, M., Dynamic Model and Motion Planning for a Pendulum-Actuated Spherical Rolling Robot, in Proc. of the 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), pp. 656–661.

  19. Ivanova, T. B. and Pivovarova, E. N., Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator, arXiv:1511.02655 (2015).

    Google Scholar 

  20. Zhan, Q., Motion Planning of a Spherical Mobile Robot, in Motion and Operation Planning of Robotic Systems, G. Carbone, F. Gomez-Bravo (Eds.), Cham: Springer, 2015, pp. 361–381.

    Google Scholar 

  21. Gajbhiye, S. and Banavar, R. N., Geometric Modeling and Local Controllability of a Spherical Mobile Robot Actuated by an Internal Pendulum, Int. J. Robust Nonlinear Control, 2015.

    Google Scholar 

  22. Borisov, A. V. and Mamaev, I. S., Two Non-holonomic Integrable Problems Tracing Back to Chaplygin, Regul. Chaotic Dyn., 2012, vol. 17, no. 2, pp. 191–198.

    Article  MathSciNet  MATH  Google Scholar 

  23. Morinaga, A., Svinin, M., and Yamamoto, M., A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors, IEEE Trans. on Robotics, 2014, vol. 30, no. 4, pp. 993–1002.

    Article  Google Scholar 

  24. Fantoni, I. and Lozano, R., Non-Linear Control for Underactuated Mechanical Systems, London: Springer, 2002.

    Book  Google Scholar 

  25. Hamel, G., Die Lagrange-Eulerschen Gleichungen der Mechanik, Z. Math. u. Phys., 1904, vol. 50, pp. 1–57.

    MATH  Google Scholar 

  26. Borisov, A.V. and Mamaev, I. S., Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos, 2nd ed., Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Kilin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilin, A.A., Pivovarova, E.N. & Ivanova, T.B. Spherical robot of combined type: Dynamics and control. Regul. Chaot. Dyn. 20, 716–728 (2015). https://doi.org/10.1134/S1560354715060076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715060076

MSC2010 numbers

Keywords

Navigation