Skip to main content

Advertisement

Log in

Dynamic modeling and stability analysis of a power-generating tumbleweed rover

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces a novel tumbleweed rover design that employs a pendulum–generator system to harvest electrical power from the wind. First, the dynamics of this multibody system are developed, including the internal pendulum dynamics, resistance (damping) provided by the electrical generators, external wind force, and rolling constraints between the sphere and the ground. Second, the stability of the system (without wind) is studied and it is shown that it is stable in the sense of Lyapunov. Finally, simulation results are provided that verify the system will roll stably downwind while generating power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maimone, M.: Surface navigation and mobility intelligence on the mars exploration rovers. In: Howard, A., Tunstel, E. (eds.) Intelligence for Space Robotics, pp. 45–70. TSI Press, San Antonio (2006). Chap. 3

    Google Scholar 

  2. Behar, A., Matthews, J., Carsey, F., Jones, J.: NASA/JPL tumbleweed polar rover (1003) (2004)

  3. Jones, J.: Inflatable robotics for planetary applications. In: Proceedings of the International Symposium on Artificial Intelligence and Robotics and Automation in Space (iSAIRAS), St. Hubert, Quebec, Canada (2001)

  4. Antol, J., Calhoun, P., Flick, J., Hajos, G., Kolacinski, R., Minton, D., Owens, R., Parker, J.: Low cost Mars surface exploration: the Mars tumbleweed. Tech. Rep. TM-2003-212411, NASA (2003)

  5. Hoeg, T., Southard, L., Boxerbaum, A., Reis, L., Antol, J., Heldmann, J., Quinn, R.: Tumbleweed rover science mission to Dao Vallis. In: Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, 2006-70, Reno, Nevada (2006)

  6. Southard, L., Hoeg, T., Palmer, D., Antol, J., Roger Quinn, R.K.: Exploring Mars using a group of tumbleweed rovers. In: Proceedings IEEE International Conference on Robotics and Automation (ICRA), pp. 775–780, Roma, Italy (2007)

  7. Antol, J., Woodard, S., Hajos, G.: Using wind driven tumbleweed rovers to explore martian gully features. In: Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, 2005-245, Reno, Nevada (2005)

  8. Lorenz, R., Jones, J., Wu, J.: Mars magnetometry from a tumbleweed rover. In: IEEEAC (1054) (2003)

  9. Matthews, J.: Development of the tumbleweed rover. Tech. Rep., Jet Propulsion Laboratory (2003)

  10. Lorenz, R., Behar, A., Nicaise, F., Jonsson, J., Myers, M.: Field testing and dynamic model development for a Mars tumbleweed rover. In: Proceedings of the International Planetary Probe Workshop, Pasadena, CA (2006)

  11. Kolacinski, R., Quinn, R.: Design of a biologically inspired martian rover based upon the Russian thistle (salsola tragus). In: Proceedings of the Dynamics and Control of Space Structures Symposium (DCSSS04), Italy (2004)

  12. Antol, J., Harris, S., Hajos, G., Strickland, C.: Wind tunnel tests of evolved Mars tumbleweed concepts. In: Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, 2006-69, Reno, Nevada (2006)

  13. Antol, J., Chattin, R., Copeland, B., Krizan, S.: The NASA Langley mars tumbleweed rover prototype. In: Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, 2006-64, Reno, Nevada (2006)

  14. Claycomb, J., DeJarnette, F., Mazzoleni, A.: Development and construction of a prototype Mars tumbleweed rover. In: Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, 2006-66, Reno, Nevada (2006)

  15. DeJarnette, F., Casper, K., Maxwell, B., Schwarz, J., Sebastian, T., Engler, W., Hanrahan, H., Lam, N.: Deployment devices and solar power for Mars tumbleweed rovers. In: Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, 2005-246, Reno, Nevada (2005)

  16. Suomela, J., Ylikorpi, T.: Ball-shaped robots: an historical overview and recent developments at TKK. In: Corke, P., Sukkarieh, S. (eds.) Field and Services Robotics, STAR, pp. 343–354. Springer, Berlin (2006)

    Chapter  Google Scholar 

  17. Wilson, J., Hartl, A., Mazzoleni, A., DeJarnette, F.: Dynamics modeling of a Mars tumbleweed rover. In: Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, 2006-71, Reno, Nevada (2006)

  18. Basic, G.: Tumbleweed rover technology developments: Overview of prototype designs, field tests, aerodynamics and dynamics analysis. Tech. Rep., University of Toronto Institute for Aerospace Studies (2008)

  19. Hughes, P.C.: Spacecraft Attitude Dynamics, 2nd edn. Dover, Mineola (2004)

    Google Scholar 

  20. White, F.M.: Fluid Mechanics, 5th edn. McGraw-Hill, New York (2003)

    Google Scholar 

  21. Damaren, C.J.: On the dynamics and control of flexible multibody systems with closed loops. Int. J. Robot. Res. 19(3), 238–253 (2000)

    Article  Google Scholar 

  22. Campion, G., d’Andrea Novel, B., Bastin, G.: Controllability and state feedback stabilizability of non holonomic mechanical systems. In: Advanced Robot Control: Proceedings of the International Workshop on Nonlinear and Adaptive Control: Issues in Robotics. Grenoble, France (1990)

  23. Marquez, H.: Nonlinear Control Systems. Wiley, Hoboken (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Barfoot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forbes, J.R., Barfoot, T.D. & Damaren, C.J. Dynamic modeling and stability analysis of a power-generating tumbleweed rover. Multibody Syst Dyn 24, 413–439 (2010). https://doi.org/10.1007/s11044-010-9202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-010-9202-2

Keywords

Navigation