Skip to main content
Log in

Viscoelastic incremental formulation using creep and relaxation differential approaches

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

A new incremental formulation in the time domain for linear, non-ageing viscoelastic materials undergoing mechanical deformation is presented in this work. The formulation is derived from linear differential equations based on a discrete spectrum representation for the creep and relaxation tensors. The incremental constitutive equations are then obtained by finite difference integration. Thus the difficulty of retaining the stress and strain history in computer solutions is avoided. A complete general formulation of linear viscoelastic stress analysis is developed in terms of increments of strains and stresses in order to establish the constitutive stress–strain relationship. The presented method is validated using numerical simulations and reliable results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boltzmann, L.: Zur Theorie der elastischen Nachwirkung Sitzungsber. Denkschr. Kais. Akad. Wiss., Mat-Nat.wiss Kl. 70, 275 (1878)

    Google Scholar 

  • Chazal, C., Dubois, F.: A new incremental formulation in the time domain of crack initiation in an orthotropic linearly viscoelastic solid. Mech. Time-Depend. Mater. 5, 229–253 (2001)

    Article  Google Scholar 

  • Chazal, C., Moutou Pitti, R.: An incremental constitutive law for ageing viscoelastic materials: a three dimensional approach. C. R. Méc. 337, 30–33 (2009)

    MATH  Google Scholar 

  • Christensen, R.M.: Theory of Viscoelasticity: an Introduction. Academic Press, New York (1971). ISBN 0-12-174250-4

    Google Scholar 

  • Dubois, F., Chazal, C., Petit, C.: Viscoelastic crack growth process in wood timbers: An approach by the finite element method for mode I fracture. Int. J. Fract. 113, 367–388 (2002)

    Article  Google Scholar 

  • Dubois, F., Chazal, C., Petit, C.: A finite element analysis of creep-crack growth in viscoelastic media. Mech. Time-Depend. Mater. 2, 269–286 (1999)

    Article  Google Scholar 

  • Duffrène, L., Gy, R., Burlet, H., Piques, R., Faivre, A., Sekkat, A., Perez, J.: Generalized Maxwell model for the viscoelastic behavior of a soda-lime-silica glass under low frequency shear loading. Rheol. Acta 36, 173–186 (1997)

    Article  Google Scholar 

  • Ghazlan, G., Caperaa, S., Petit, C.: An incremental formulation for the linear analysis of thin viscoelastic structures using generalised variables. Int. J. Num. Methods Eng. 38, 3315–3333 (1995)

    Article  MATH  Google Scholar 

  • Godunov, S.K., Denisenko, V.V., Kozin, N.S., Kuzmina, N.K.: Use of relaxation viscoelastic model in calculating uniaxial homogeneous strains and refining the interpolation equations for maxwellian viscosity. J. Appl. Mech. Tech. Phys. 16, 811–814 (1975)

    Article  Google Scholar 

  • Le, Q.V., Meftah, F., He, Q.-C., Le Pape, Y.: Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori-Tanaka homogenization scheme and a discrete microscopic retardation spectrum. Mech. Time-Depend. Mater. 11, 309–331 (2007)

    Article  Google Scholar 

  • Lee, S., Knauss, W.G.: A note on the determination of relaxation and creep data from ramp tests. Mech. Time-Depend. Mater. 4, 1–7 (2000)

    Article  Google Scholar 

  • Mandel, J.: Dissipativité normale et variables caches. Mech. Res. Commun. 5, 225–229 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Moutou Pitti, R., Dubois, F., Petit, C., Sauvat, N.: Mixed mode fracture separation in viscoelastic orthotropic media: numerical and analytical approach by the Mθv-integral. Int. J. Fract. 145, 181–193 (2007)

    Article  Google Scholar 

  • Moutou Pitti, R., Dubois, F., Petit, C., Sauvat, N., Pop, O.: A new M integral parameter for mixed mode crack growth in orthotropic viscoelastic material. Eng. Fract. Mech. (2008). doi:10.1016/j.engfracmech.2008.04.021

    Google Scholar 

  • Salencon, J.: Viscoélasticité Linéaire Appliquée au Calcul des Structures. Presse de l’Ecole Nationale des Ponts et Chaussées, Paris (1983)

    Google Scholar 

  • Theocaris, P.S.: Creep and relaxation contraction ratio of linear viscoelastic materials. J. Mech. Phys. Solids 12, 125–138 (1964)

    Article  Google Scholar 

  • Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, New York (1959)

    Google Scholar 

  • Vidal-Sallé, E., Chassagne, P.: Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalised Maxwell model application to wood material. Mech. Time-Depend. Mater. 11, 127–142 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Chazal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chazal, C., Mouto Pitti, R. Viscoelastic incremental formulation using creep and relaxation differential approaches. Mech Time-Depend Mater 14, 173–190 (2010). https://doi.org/10.1007/s11043-009-9101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-009-9101-1

Keywords

Navigation