Skip to main content
Log in

Pixel similarity-based adaptive Riesz mean filter for salt-and-pepper noise removal

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this study, we propose a new method, i.e. Adaptive Riesz Mean Filter (ARmF), by operationalizing pixel similarity for salt-and-pepper noise (SPN) removal. Afterwards, we compare the results of ARmF, A New Adaptive Weighted Mean Filter (AWMF), Different Applied Median Filter (DAMF), Noise Adaptive Fuzzy Switching Median Filter (NAFSMF), Based on Pixel Density Filter (BPDF), Modified Decision-Based Unsymmetric Trimmed Median Filter (MDBUTMF) and Decision-Based Algorithm (DBA) by using Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), Image Enhancement Factor (IEF), and Visual Information Fidelity (VIF) for 20 traditional test images (Lena, Cameraman, Barbara, Baboon, Peppers, Living Room, Lake, Plane, Hill, Pirate, Boat, House, Bridge, Elaine, Flintstones, Flower, Parrot, Dark-Haired Woman, Blonde Woman, and Einstein), 40 test images in the TESTIMAGES Database, and 200 RGB test images from the UC Berkeley Dataset ranging in noise density from 10% to 90%. Moreover, we compare the running time of these algorithms. These results show that ARmF outperforms the methods mentioned above. We finally discuss the need for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asuni N, Giachetti A (2014) TESTIMAGES: A Large-Scale Archive for Testing Visual Devices and Basic Image Processing Algorithms. STAG - Smart Tools & Apps for Graphics Conference

  2. Bai T, Tan J, Hu M, Wang Y (2014) A novel algorithm for removal of salt and pepper noise using continued fractions interpolation. Signal Process. https://doi.org/10.1016/j.sigpro.2014.03.023

    Article  Google Scholar 

  3. Chen CLP, Liu L, Chen L, Tang YY, Zhou Y (2015) Weighted couple sparse representation with classified regularization for impulse noise removal. IEEE Trans Image Process 24:4014–4026. https://doi.org/10.1109/TIP.2015.2456432

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen Q-Q, Hung M-H, Zou F (2017) Effective and adaptive algorithm for pepper-and-salt noise removal. IET Image Process 11:709–716. https://doi.org/10.1049/iet-ipr.2016.0692

    Article  Google Scholar 

  5. Chen J, Zhan Y, Cao H, Wu X (2018) Adaptive probability filter for removing salt and pepper noises. IET Image Process. https://doi.org/10.1049/iet-ipr.2017.0910

    Article  Google Scholar 

  6. Deng X, Ma Y, Dong M (2016) A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN. Pattern Recogn Lett 79:8–17. https://doi.org/10.1016/j.patrec.2016.04.019

    Article  Google Scholar 

  7. Enginoğlu S, Demiriz S (2015) A Comparison With The Convergent, Cesàro Convergent and Riesz Convergent Sequences of Fuzzy Numbers. The 4th International Fuzzy Systems Symposium, 5-6 November 2015 Istanbul-Turkey, pp 416–419

  8. Erkan U, Gökrem L (2018) A new method based on pixel density in salt and pepper noise removal. Turkish J Electr Eng Comput Sci. https://doi.org/10.3906/elk-1705-256

    Article  Google Scholar 

  9. Erkan U, Kilicman A (2016) Two new methods for removing salt-and-pepper noise from digital images, ScienceAsia. https://doi.org/10.2306/scienceasia1513-1874.2016.42.028

    Article  Google Scholar 

  10. Erkan U, Gökrem L, Enginoğlu S (2018) Different applied median filter in salt and pepper noise. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2018.01.019

    Article  Google Scholar 

  11. Esakkirajan S, Veerakumar T, Subramanyam AN, PremChand CH (2012) Removal of high density salt & pepper noise through a modified decision based median filter. 2012 Int Conf Informatics, Electron Vision, ICIEV 2012 18:565–570. https://doi.org/10.1109/ICIEV.2012.6317448

  12. Filipović M, Jukić A (2014) Restoration of images corrupted by mixed Gaussian-impulse noise by iterative soft-hard thresholding. Eur Signal Process Conf 44:1637–1641. https://doi.org/10.1016/j.patcog.2011.02.002

    Article  Google Scholar 

  13. González-Hidalgo M, Massanet S, Mir A, Ruiz-Aguilera D (2018) Improving salt and pepper noise removal using a fuzzy mathematical morphology-based filter. Appl Soft Comput 63:167–180. https://doi.org/10.1016/j.asoc.2017.11.030

    Article  Google Scholar 

  14. Hwang H, Haddad RA (1995) Adaptive Median Filters: New Algorithms and Results. IEEE Trans Image Process. https://doi.org/10.1109/83.370679

    Article  Google Scholar 

  15. Li Y, Chung FL, Wang S (2008) A robust neuro-fuzzy network approach to impulse noise filtering for color images. Appl Soft Comput 8:872–884. https://doi.org/10.1016/j.asoc.2007.07.006

    Article  Google Scholar 

  16. Lu CT, Chen YY, Wang LL, Chang CF (2016) Removal of salt-and-pepper noise in corrupted image using three-values-weighted approach with variable-size window. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2016.06.026

    Article  Google Scholar 

  17. Martin D, Fowlkes C, Tal D, Malik J (2001) A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics, Proc. 8th Int'l Conf. Computer Vision, 2:416–423. https://www2.eecs.berkeley.edu/research/projects/CS/vision/bsds/BSDS300/html/DataSet/images.html

  18. Nair MS, Raju G (2011) Additive noise removal using a novel fuzzy-based filter. Comput Electr Eng 37:644–655. https://doi.org/10.1016/j.compeleceng.2011.06.001

    Article  Google Scholar 

  19. Nie L, Wang M, Zha Z-J, Chua T-S (2012) Oracle in image search. ACM Trans Inf Syst. https://doi.org/10.1145/2180868.2180875

    Article  Google Scholar 

  20. Pratt WK (1975) Semiannual Technical Report. Image Processing Institute, University of Southern California

  21. Roy A, Singha J, Devi SS, Laskar RH (2016) Impulse noise removal using SVM classification based fuzzy filter from gray scale images. Signal Process 128:262–273. https://doi.org/10.1016/j.sigpro.2016.04.007

    Article  Google Scholar 

  22. Russ JC, Russ JC (2008) Introduction to image processing and analysis. CRC Press Taylor & Francis Group, Boca Raton, London, New York

    MATH  Google Scholar 

  23. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2005.859378

    Article  Google Scholar 

  24. Srinivasan KS, Ebenezer D (2007) A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Process Lett 14:189–192. https://doi.org/10.1109/LSP.2006.884018

    Article  Google Scholar 

  25. Tang Z, Yang Z, Liu K, Pei Z (2016) A new adaptive weighted mean filter for removing high density impulse noise. 21:1003353. https://doi.org/10.1117/12.2243838

  26. Toh KKV, Isa NAM (2010) Noise Adaptive Fuzzy Switching Median Filter for Salt-and-Pepper Noise Reduction. 17:281–284

    Article  Google Scholar 

  27. Tukey JW (1977) Exploratory data analysis. Addison­Wesley, Reading, MA

    MATH  Google Scholar 

  28. Varatharajan R, Vasanth K, Gunasekaran M, Priyan M, Gao XZ (2017) An adaptive decision based kriging interpolation algorithm for the removal of high density salt and pepper noise in images. Comput Electr Eng 0:1–15. https://doi.org/10.1016/j.compeleceng.2017.05.035

    Article  Google Scholar 

  29. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  30. Wang G, Li D, Pan W, Zang Z (2010) Modified switching median filter for impulse noise removal. Signal Process 90:3213–3218. https://doi.org/10.1016/j.sigpro.2010.05.026

    Article  MATH  Google Scholar 

  31. Wang S, Liu Q, Xia Y, Dong P, Luo J, Huang Q, Feng DD (2013) Dictionary learning based impulse noise removal via L1-L1 minimization. Signal Process 93:2696–2708. https://doi.org/10.1016/j.sigpro.2013.03.005

    Article  Google Scholar 

  32. Wang Y, Wang J, Song X, Han L (2016) An efficient adaptive fuzzy switching weighted mean filter for salt-and-pepper noise removal. IEEE Signal Process Lett 23:1582–1586. https://doi.org/10.1109/LSP.2016.2607785

    Article  Google Scholar 

  33. Zhang Z, Han D, Dezert J, Yang Y (2018) A new adaptive switching median filter for impulse noise reduction with pre-detection based on evidential reasoning. Signal Process 147:173–189. https://doi.org/10.1016/j.sigpro.2018.01.027

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University, Grant number: FHD-2018-1409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Enginoğlu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enginoğlu, S., Erkan, U. & Memiş, S. Pixel similarity-based adaptive Riesz mean filter for salt-and-pepper noise removal. Multimed Tools Appl 78, 35401–35418 (2019). https://doi.org/10.1007/s11042-019-08110-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08110-1

Keywords

Navigation