Skip to main content
Log in

A Comprehensive Overview of Image Enhancement Techniques

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Image enhancement plays an important role in improving image quality in the field of image processing, which is achieved by highlighting useful information and suppressing redundant information in the image. In this paper, the development of image enhancement algorithms is surveyed. The purpose of our review is to provide relevant researchers with a comprehensive and systematic analysis on image enhancement techniques and give them a valuable reference. Various image enhancement algorithms were mentioned and underlying difficulties, limitations, merits and disadvantages were discussed in applying these techniques in the past two decades with three aspects: supervised algorithm, unsupervised algorithm and quality evaluation, respectively. Further, we summarize some existing problems and analyze the future development trend of existing enhanced algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bedi SS, Khandelwal R (2013) Various image enhancement techniques-a critical review. Int J Adv Res Comput Commun Eng 2(3):1605–1609

    Google Scholar 

  2. Walter RJ ,  Berns MW (1986) Digital Image Processing and Analysis[M]. IEEE Computer Society Pr

  3. Chang D, Wu W (1998) Image contrast enhancement based on a histogram transformation of local standard deviation. IEEE Trans Med Imaging 17(4):518–531

    Article  Google Scholar 

  4. Wang Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45(1):68–75

    Article  Google Scholar 

  5. Agaian SS, Silver B, Panetta KA (2007) Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans Image Process 16(3):741–758

    Article  MathSciNet  Google Scholar 

  6. Polesel A, Ramponi G, Mathews V (2000) Image enhancement via adaptive unsharp masking. IEEE Trans Image Process 9(3):505–510

    Article  Google Scholar 

  7. Lin S, Wong C, Jiang G, Rahman M, Ren T, Kwok N, Shi H, Yu Y-H, Wu T (2016) Intensity and edge based adaptive unsharp masking filter for color image enhancement. Optik Int J Light Electron Opti 27(1):407–414

    Article  Google Scholar 

  8. Liu L, Jia Z, Yang J, Kasabov N (2015) A medical image enhancement method using adaptive thresholding in nsct domain combined unsharp masking. Int J Imaging Syst Technol 25(3):199–205

    Article  Google Scholar 

  9. Jobson D, Rahman Z (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Process A Publ IEEE Signal Process Soc 6(3):451–462

    Article  Google Scholar 

  10. Jobson DJ, Rahman Z, Woodell GA (2002) A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process 6(7):965–976

    Article  Google Scholar 

  11. Rahman Z, Jobson DJ, Woodell GA (2004) Retinex processing for automatic image enhancement. J Electron Imaging 13(1):100–110

    Article  Google Scholar 

  12. Zhengang S, Liqun G, Kun W (2007) A novel approach to image enhancement and thresholding based on fuzzy theory. In: IEEE Conference on industrial electronics and applications 2201–2205

  13. Kong XW (2007) The fuzzy image enhancement algorithm for iow snr image. Laser J 5:44–45

    Google Scholar 

  14. Li C, Guo J, Porikli F, Pang Y (2018) Lightennet: a convolutional neural network for weakly illuminated image enhancement. Pattern Recognit Lett 104:15–22

    Article  Google Scholar 

  15. Zheng WT, Pu T, Cheng J, Zheng H (2012) Image contrast enhancement by contourlet transform and pcnn, In: International conference on audio, language and image processing 735–739

  16. Singh GMA (2014) Various image enhancement techniques-a critical review. Int J Innov Sci Res 10(2):267–274

    Google Scholar 

  17. Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S (2012) Scalable k-means++. Proc Vldb Endow 5(7):622–633

    Article  Google Scholar 

  18. D’Andrade RG (1978) U-statistic hierarchical clustering. Psychometrika 43(1):59–67

    Article  MATH  Google Scholar 

  19. Dempster AP (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc 39

  20. Wang X, Chen L (2017) An effective histogram modification scheme for image contrast enhancement. Signal Process Image Commun 58:187–198

    Article  Google Scholar 

  21. Qiuqi R, Yuzhi R (2013) Digital Image Processing, 3rd edn. Publishing House of Electronics Industry

  22. Le-Peng LI, Sun SF, Xia C, Chen P, Dong FM (2014) Survey of histogram equalization technology. Comput Syst Appl 03:1–8

    Google Scholar 

  23. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Graphics Gems 474–485

  24. Wang Y, Pan Z (2017) Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization. Infrared Phys Technol 86:59–65

    Article  Google Scholar 

  25. Lamberti F, Montrucchio B, Sanna A (2006) Cmbfhe: a novel contrast enhancement technique based on cascaded multistep binomial filtering histogram equalization. IEEE Trans Consum Electron 52(3):966–974

    Article  Google Scholar 

  26. Liu B, Jin W, Chen Y, Liu C, Li L (2011) Contrast enhancement using non-overlapped sub-blocks and local histogram projection. IEEE Trans Consum Electron 57(2):583–588

    Article  Google Scholar 

  27. Kim J, Kim L, Hwang S (2001) An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans Circuits Syst Video Technol 11(4):475–484

    Article  Google Scholar 

  28. Agarwal M, Mahajan R (2017) Medical images contrast enhancement using quad weighted histogram equalization with adaptive gama correction and homomorphic filtering. Procedia Comput Sci 115:509–517

    Article  Google Scholar 

  29. Wang Q, Ward RK (2007) Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans Consum Electron 53(2):757–764

    Article  Google Scholar 

  30. Wong CY, Liu S, Liu SC, Rahman A, Lin SCF, Jiang G, Kwok NM, Shi H (2016) Image contrast enhancement using histogram equalization with maximum intensity coverage. J Modern Opt 63(16):1618–1629

    Article  MathSciNet  MATH  Google Scholar 

  31. Arici T, Dikbas S, Altunbasak Y (2009) A histogram modification framework and its application for image contrast enhancement. IEEE Trans Image Process 18(9):1921–1935

    Article  MathSciNet  MATH  Google Scholar 

  32. Yun SH, Jin HK, Kim S (2011) Contrast enhancement using a weighted histogram equalization. In: IEEE International Conference on Consumer Electronics

  33. Huang S, Cheng F, Chiu Y (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22(3):1032–1041

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang Z, Zhang T, Li Q, Fang H (2016) Adaptive gamma correction based on cumulative histogram for enhancing near-infrared images. Infrared Phys Technol 79:205–215

    Article  Google Scholar 

  35. Kim Y (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  36. Der Chen S, Ramli AR (2003) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 49(4):1310–1319

    Article  Google Scholar 

  37. Tan TL, Sim KS, Tso CP (2012) Image enhancement using background brightness preserving histogram equalisation. Electron Lett 48(3):155–157

    Article  Google Scholar 

  38. Singh K, Vishwakarma DK, Walia GS, Kapoor R (2016) Contrast enhancement via texture region based histogram equalization. J Modern Opt 63(15):1444–1450

    Article  Google Scholar 

  39. Abdullahalwadud M, Kabir H, Dewan MAA, Chae O (2007) A dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 53(2):593–600

    Article  Google Scholar 

  40. Ibrahim H, Kong NSP (2007) Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 53(4):1752–1758

    Article  Google Scholar 

  41. Zhao W, Xu Z, Zhao J, Zhao F, Han X (2014) Infrared image detail enhancement based on the gradient field specification. Appl Opt 53(19):4141–4149

    Article  Google Scholar 

  42. Fu JC, Lien HC, Wong STC (2000) Wavelet-based histogram equalization enhancement of gastric sonogram images. Comput Med Imaging Graph 24(2):59–68

    Article  Google Scholar 

  43. Kaur A, Singh C (2017) Contrast enhancement for cephalometric images using wavelet-based modified adaptive histogram equalization. Appl Soft Comput 51:180–191

    Article  Google Scholar 

  44. Ooi CH, Kong NSP, Ibrahim H (2009) Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans Consum Electron 55(4):2072–2080

    Article  Google Scholar 

  45. Singh K, Kapoor R (2014) Image enhancement via median-mean based sub-image-clipped histogram equalization. Optik 125(17):4646–4651

    Article  Google Scholar 

  46. Singh K, Kapoor R (2014) Image enhancement using exposure based sub image histogram equalization. Pattern Recognit Lett 36:10–14

    Article  Google Scholar 

  47. Land EH (1977) The retinex theory of color vision. Sci Am 237(6):108–128

    Article  Google Scholar 

  48. Land EH, Mccann JJ (1971) Lightness and retinex theory. J Opt Soc Am 61(1):1–11

    Article  Google Scholar 

  49. Land EH (1983) Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. Proc Natl Acad Sci U S Am 80(16):5163–5169

    Article  Google Scholar 

  50. Brainard DH, Wandell BA (1986) Analysis of the retinex theory of color vision. J Opt Soc Am A Opt Image Sci Vis 3(10):1651–1661

    Article  Google Scholar 

  51. Rizzi A, Gatta C, Marini D (2003) A new algorithm for unsupervised global and local color correction. Pattern Recognit Lett 24(11):1663–1677

    Article  Google Scholar 

  52. Provenzi E, De Carli L, Rizzi A, Marini D (2005) Mathematical definition and analysis of the retinex algorithm. J Opt Soc Am A Opt Image Sci Vision 22(12):2613–2621

    Article  MathSciNet  Google Scholar 

  53. Marini D, Rizzi A (2000) A computational approach to color adaptation effects. Image Vision Comput 18(13):1005–1014

    Article  Google Scholar 

  54. Cooper TJ, Baqai FA (2004) Analysis and extensions of the frankle-mccann retinex algorithm. J Electron Imaging 13(1):85–92

    Article  Google Scholar 

  55. Gianini G, Lecca M, Rizzi A (2016) A population-based approach to point-sampling spatial color algorithms. J Opt Soc Am A Opt Image Sci Vision 33(12):2396–2413

    Article  Google Scholar 

  56. Zosso D, Tran G, Osher S (2015) Non-local retinex-a unifying framework and beyond. Siam J Imaging Sci 8(2):787–826

    Article  MathSciNet  MATH  Google Scholar 

  57. Frankle JA, Mccann JJ (1983) Method and apparatus for lightness imaging

  58. Provenzi E, Fierro M, Rizzi A, De Carli L, Gadia D, Marini D (2007) Random spray retinex: a new retinex implementation to investigate the local properties of the model. IEEE Trans Image Process 16(1):162–171

    Article  MathSciNet  Google Scholar 

  59. Banic N, Loncaric S (2013) Light random sprays retinex: exploiting the noisy illumination estimation. IEEE Signal Process Lett 20(12):1240–1243

    Article  Google Scholar 

  60. Banic N, Loncaric S (2015) Smart light random memory sprays retinex: a fast retinex implementation for high-quality brightness adjustment and color correction. J Opt Soc Am A Opt Image Sci Vision 32(11):2136–2147

    Article  Google Scholar 

  61. Bertalmio M, Caselles V, Provenzi E (2009) Issues about retinex theory and contrast enhancement. Int J Comput Vision 83(1):101–119

    Article  Google Scholar 

  62. Land EH (1986) An alternative technique for the computation of the designator in the retinex theory of color vision. Proc Natl Acad Sci U S Am 83(10):3078–3080

    Article  Google Scholar 

  63. Rahman Z, Jobson DJ, Woodell GA (1996) Multi-scale retinex for color image enhancement 3:1003–1006

  64. Petro AB, Sbert C, Morel JM (2014) Multiscale retinex. Image Process Line 4:71–88

    Article  Google Scholar 

  65. Wang S, Luo G (2018) Naturalness preserved image enhancement using a priori multi-layer lightness statistics. IEEE Trans Image Process 27(2):938–948

    Article  MathSciNet  MATH  Google Scholar 

  66. Provenzi E (2017) Formalizations of the retinex model and its variants with variational principles and partial differential equations. J Electron Imaging 27(1):011003

    Article  Google Scholar 

  67. Horn BK (1974) Determining lightness from an image. Comput Graph Image Process 3(4):277–299

    Article  Google Scholar 

  68. Blake A (1985) Boundary conditions for lightness computation in Mondrian world. Comput Vis Graph Image Process 32(3):314–327

    Article  Google Scholar 

  69. Blake A (1985) On Lightness Computation in Mondrian World, Palgrave Macmillan UK

  70. Brelstaff G, Blake A (1987) Computing lightness. Pattern Recognit Lett 5(2):129–138

    Article  Google Scholar 

  71. Morel J, Petro AB, Sbert C (2009) Fast implementation of color constancy algorithms. Proc of SPIE 7241:724106

    Article  Google Scholar 

  72. Morel J, Petro AB, Sbert C (2010) A pde formalization of retinex theory. IEEE Trans Image Process 19(11):2825–2837

    Article  MathSciNet  MATH  Google Scholar 

  73. Ma W,Morel JM, Osher S, Chien A (2011) An l1-based variational model for retinex theory and its application to medical images, In: The 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011

  74. Osher S, Burger M, Goldfarb D, Xu J, Yin W (2005) An iterative regularization method for total variation-based image restoration. Multiscale Model Simul 4(2):460–489

    Article  MathSciNet  MATH  Google Scholar 

  75. Palmaamestoy R, Provenzi E, Bertalmio M, Caselles V (2009) A perceptually inspired variational framework for color enhancement. IEEE Trans Pattern Anal Mach Intell 31(3):458–474

    Article  Google Scholar 

  76. Buchsbaum G (1980) A spatial processor model for object colour perception. J Frankl Inst Eng Appl Math 310(1):1–26

    Article  Google Scholar 

  77. Provenzi E, Caselles V (2014) A wavelet perspective on variational perceptually-inspired color enhancement. Int J Comput Vision 106(2):153–171

    Article  MathSciNet  MATH  Google Scholar 

  78. Kimmel R, Elad M, Shaked D, Keshet R, Sobel I (2003) A variational framework for retinex. Int J Comput Vision 52(1):7–23

    Article  MATH  Google Scholar 

  79. Chen T, Yin W, Zhou XS, Comaniciu D, Huang TS (2006) Total variation models for variable lighting face recognition. IEEE Trans Pattern Anal Mach Intell 28(9):1519–1524

    Article  Google Scholar 

  80. Ng MK, Wang W (2011) A total variation model for retinex. Siam J Imaging Sci 4(1):345–365

    Article  MathSciNet  MATH  Google Scholar 

  81. Ma W, Osher S (2012) A tv bregman iterative model of retinex theory. Inverse Probl Imaging 6(4):697–708

    Article  MathSciNet  MATH  Google Scholar 

  82. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D Nonlinear Phenom 60:259–268

    Article  MathSciNet  MATH  Google Scholar 

  83. Fu X, Liao Y, Zeng D, Huang Y, Zhang X, Ding X (2015) A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans Image Process 24(12):4965–4977

    Article  MathSciNet  MATH  Google Scholar 

  84. Goldstein T, Osher S (2009) The split bregman method for l1-regularized problems. Siam J Imaging Sci 2(2):323–343

    Article  MathSciNet  MATH  Google Scholar 

  85. Fu X, Zeng D, Huang Y, Zhang X, Ding X (2016) A weighted variational model for simultaneous reflectance and illumination estimation, In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016:2782–2790

  86. Guo X, Li Y, Ling H (2017) Lime: low-light image enhancement via illumination map estimation. IEEE Trans Image Process 26(2):982–993

    Article  MathSciNet  MATH  Google Scholar 

  87. Li M, Liu J, Yang W, Sun X, Guo Z (2018) Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans on Image Process 27(6):2828–2841

    Article  MathSciNet  MATH  Google Scholar 

  88. Ren X, Yang W, Cheng W, Liu J (2020) Lr3m: robust low-light enhancement via low-rank regularized retinex model. IEEE Trans on Image Process 29:5862–5876

    Article  MathSciNet  Google Scholar 

  89. Xu J, Hou Y, Ren D, Liu L, Zhu F, Yu M, Wang H, Shao L (2020) Star: a structure and texture aware retinex model. IEEE Trans on Image Process 29:5022–5037

    Article  Google Scholar 

  90. Tang M, Xie F, Zhang R, Jiang Z, Bovik AC (2020) A local flatness based variational approach to retinex. IEEE Trans on Image Process 29:7217–7232

    Article  MathSciNet  Google Scholar 

  91. Eckhorn R, Reitboeck H, Arndt M, Dicke P (2014) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comput 2(3):293–307

    Article  Google Scholar 

  92. Reitboeck HJ (1989) A model for feature linking via correlated neural activity, Synergetics on Cognition

  93. Parodi O, Combe P, Ducom JC (1996) Temporal coding in vision: coding by the spike arrival times leads to oscillations in the case of moving targets. Biol Cybern 74(6):497–509

    Article  MATH  Google Scholar 

  94. Rybak IA, Shevtsova NA, Podladchikova LN, Golovan AV (1991) A visual cortex domain model and its use for visual information processing. Neural Netw 4(1):3–13

    Article  Google Scholar 

  95. Chen Y, Park S-K, Ma Y, Ala R (2011) A new automatic parameter setting method of a simplified pcnn for image segmentation. IEEE Trans on Neural Netw 22(6):880–892

    Article  Google Scholar 

  96. Ranganath H, Kuntimad G, Johnson J (1995) Pulse coupled neural networks for image processing. Proc IEEE Southeastcon’95. Visualize the Future, IEEE, pp 37–43

    Google Scholar 

  97. Lindblad T, Kinser JM, Taylor J (2005) Image processing using pulse-coupled neural networks. Springer, Berlin

    MATH  Google Scholar 

  98. Junying Z, Tao L (2003) Enhancement of image by pcnn. Comput Eng Appl 39(19):93–95

    Google Scholar 

  99. Kinser JM, Lindblad T (1999) Implementation of pulse-coupled neural networks in a cnaps environment. IEEE Trans Neural Netw 10(3):584–590

    Article  Google Scholar 

  100. Lindblad T, Kinser JM (1999) Inherent features of wavelets and pulse coupled networks. IEEE Trans Neural Netw 10(3):607–614

    Article  Google Scholar 

  101. Kuntimad G, Ranganath HS (1999) Perfect image segmentation using pulse coupled neural networks. IEEE Trans Neural Netw 10(3):591–8

    Article  Google Scholar 

  102. Ranganath HS, Kuntimad G (1996) Iterative segmentation using pulse-coupled neural networks, In: Applications and Science of Artificial Neural Networks II, Vol. 2760, International Society for Optics and Photonics, pp. 543–554

  103. Sun Z, Diao M, Zhao Z (2006) Algorithm of texture image enhancement based on pcnn. Appl Sci Technol 10:5–8

    Google Scholar 

  104. Dengchao F, Zhaoxuan Y, Zengmin W (2007) Adaptive enhancement algorithm of color image based on improved pcnn, In: 2007 8th International Conference on Electronic Measurement and Instruments, IEEE, 2007, pp. 844–848

  105. Yang X, Liu T, Li X (2016) Study on image enhancement algorithm merged wavelet transform and improved pcnn [j]. Comput Eng Appl 52(8):163–168

    Google Scholar 

  106. Lei L, Xi F, Chen S (2019) Finger-vein image enhancement based on pulse coupled neural network. IEEE Access 7:57226–57237

    Article  Google Scholar 

  107. Li G-Y, Li H-G, Wu T-H, Dong M (2005) Applications of pcnn and otsu theories for image enhancement. J Optoelectron Laser 16(3):358–362

    Google Scholar 

  108. Li G, Li H, Wu T (2005) The image enhancement based on modified pulse coupled neural network and genetic algorithm. J Test Meas Technol 19(3):304–309

    Google Scholar 

  109. Li G-Y, Li H-G, Wu T-H (2005) Enhancement of image based on otsu and modified pcnn [j]. Acta Simulata Systematica Sinica 6:1370–1372

    Google Scholar 

  110. Qi C-L, Ma Y-D, Zhang Z-F (2006) Study on feedback pulse-coupled neural network model and its application. Radio Eng China 36(11):59–62

    Google Scholar 

  111. Nie R, He M, Cao J, Zhou D, Liang Z (2019) Pulse coupled neural network based mri image enhancement using classical visual receptive field for smarter mobile healthcare. J Ambient Intell Hum Comput 10(10):4059–4070

    Article  Google Scholar 

  112. Johnson JL, Padgett ML (1999) Pcnn models and applications. IEEE Trans Neural Netw 10(3):480–498

    Article  Google Scholar 

  113. Zhan K, Zhang H, Ma Y (2009) New spiking cortical model for invariant texture retrieval and image processing. IEEE Trans Neural Netw 20(12):1980–1986

    Article  Google Scholar 

  114. Zhan K, Shi J, Wang H, Xie Y, Li Q (2017) Computational mechanisms of pulse-coupled neural networks: a comprehensive review. Arch Comput Methods Eng 24(3):573–588

    Article  MathSciNet  MATH  Google Scholar 

  115. Zhan K, Teng J, Shi J, Li Q, Wang M (2016) Feature-linking model for image enhancement. Neural Comput 28(6):1072–1100

    Article  MathSciNet  MATH  Google Scholar 

  116. Zhan K, Shi J, Teng J, Li Q, Wang M, Lu F (2017) Linking synaptic computation for image enhancement. Neurocomputing 238:1–12

    Article  Google Scholar 

  117. Rybak IA, Shevtsova NA, Sandler VM (1992) The model of a neural network visual preprocessor. Neurocomputing 4(1–2):93–102

    Article  Google Scholar 

  118. Yang J, Wang G, Zhang Z, Lin S, Lu T, Jiang L (1996) The edge-detecting system of image based on the artificial receptive field implemented by the bacteriorhodopsin films. Acta Biophysica Sinica 04:65

    Google Scholar 

  119. Qi Y, Yang Z, Lian J, Guo Y, Sun W, Liu J, Wang R, Ma Y (2021) A new heterogeneous neural network model and its application in image enhancement. Neurocomputing 440:336–350

    Article  Google Scholar 

  120. Huang Y, Ma Y, Li S (2015) A new method for image quantization based on adaptive region related heterogeneous pcnn, In: International Symposium on Neural Networks

  121. Huang Y, Ma Y, Li S, Zhan K (2016) Application of heterogeneous pulse coupled neural network in image quantization. J Electron Imaging 25(6):061603

    Article  Google Scholar 

  122. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  123. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  124. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Ann Rev Biomed Eng 19:221–248

    Article  Google Scholar 

  125. Ignatov A, Kobyshev N, Timofte R, Vanhoey K, Van Gool L (2018) Wespe: weakly supervised photo enhancer for digital cameras, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 691–700

  126. Aly HA, Dubois E (2005) Image up-sampling using total-variation regularization with a new observation model. IEEE Trans Image Process 14(10):1647–1659

    Article  Google Scholar 

  127. Chen Y-S, Wang Y-C, Kao M-H, Chuang Y-Y (2018) Deep photo enhancer: Unpaired learning for image enhancement from photographs with gans, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6306–6314

  128. Jiang Y, Gong X, Liu D, Cheng Y, Fang C, Shen X, Yang J, Zhou P, Wang Z (2019)Enlightengan: Deep light enhancement without paired supervision, arXiv preprint arXiv:1906.06972

  129. Xiong W, Liu D, Shen X, Fang C, Luo J (2020) Unsupervised real-world low-light image enhancement with decoupled networks, arXiv preprint arXiv:2005.02818

  130. Yang W, Wang S, Fang Y, Wang Y, Liu J (2020) From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement, In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3063–3072

  131. Shin Y-G, Park S, Yeo Y-J, Yoo M-J, Ko S-J (2019) Unsupervised deep contrast enhancement with power constraint for oled displays. IEEE Trans Image Process 29:2834–2844

    Article  Google Scholar 

  132. Chen Q, Xu J, Koltun V (2017) Fast image processing with fully-convolutional networks, In. IEEE International Conference on Computer Vision (ICCV) 2017:2516–2525

  133. Chen C, Chen Q, Xu J, Koltun V (2018) Learning to see in the dark, In. IEEE/CVF Conference on Computer Vision and Pattern Recognition 2018:3291–3300

  134. Hu Y, He H, Xu C, Wang B, Lin S (2018) Exposure: a white-box photo post-processing framework. ACM Trans Graph (TOG) 37(2):1–17

    Article  Google Scholar 

  135. Yu R, Liu W, Zhang Y, Qu Z,Zhao D,Zhang B (2018) Deepexposure: Learning to expose photos with asynchronously reinforced adversarial learning, In: Advances in Neural Information Processing Systems 31, Curran Associates, Inc., pp. 2149–2159

  136. Park J, Lee J, Yoo D, Kweon IS (2018) Distort-and-recover: Color enhancement using deep reinforcement learning, In: IEEE/CVF Conference on Computer Vision and Pattern Recognition 2018:5928–5936

  137. Huang J, Zhu P, Geng M, Ran J, Zhou X, Xing C, Wan P, Ji X (2018) Range scaling global u-net for perceptual image enhancement on mobile devices, In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops

  138. Gharbi M, Chen J, Barron JT, Hasinoff SW, Durand F (2017) Deep bilateral learning for real-time image enhancement. ACM Trans Graph (TOG) 36(4):1–12

    Article  Google Scholar 

  139. Lv F, Lu F, Wu J, Lim C (2018) Mbllen: Low-light image/video enhancement using cnns., In: BMVC, p. 220

  140. Cai J, Gu S, Zhang L (2018) Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans Image Process 27(4):2049–2062

    Article  MathSciNet  MATH  Google Scholar 

  141. Lv F, Li Y, Lu F (2019) Attention guided low-light image enhancement with a large scale low-light simulation dataset, arXiv: 1908.00682

  142. Zamir SW, Arora A, Khan S,Hayat M, Khan FS, Yang M-H, Shao L (2020) Learning enriched features for real image restoration and enhancement, arXiv preprint arXiv:2003.06792

  143. Zhu M, Pan P, Chen W, Yang Y (2020) Eemefn: Low-light image enhancement via edge-enhanced multi-exposure fusion network. In: Proceedings of the AAAI Conference on Artificial Intelligence 34(7):13106–13113

  144. Zhang Y, Zhang J, Guo X (2019) Kindling the darkness: A practical low-light image enhancer, In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1632–1640

  145. Shen L, Yue Z, Feng F, Chen Q, Liu S, Ma J (2017) Msr-net: Low-light image enhancement using deep convolutional network, arXiv preprint arXiv:1711.02488

  146. Wei C, Wang W, Yang W, Liu J (2018) Deep retinex decomposition for low-light enhancement, arXiv preprint arXiv:1808.04560

  147. Shi Y, Xiaopo W, Zhu M (2019)Low-light image enhancement algorithm based on retinex and generative adversarial network, arXiv preprint arXiv:1906.06027

  148. Wang Y, Cao Y, Zha Z-J, Zhang J, Xiong Z, Zhang W, Wu F (2019) Progressive retinex: Mutually reinforced illumination-noise perception network for low-light image enhancement, In: Proceedings of the 27th ACM International Conference on Multimedia, ACM, 2019, pp. 2015–2023

  149. Liang J, Xu Y, Quan Y, Wang J, Ling H, Ji H (2020) Deep bilateral retinex for low-light image enhancement, arXiv preprint arXiv:2007.02018

  150. Eilertsen G, Kronander J, Denes G, Mantiuk RK, Unger J (2017) HDR image reconstruction from a single exposure using deep CNNs. Acm Trans Graph 36(6):1–15

    Article  Google Scholar 

  151. Yang X, Xu K, Song Y, Zhang Q, Wei X, Lau RWH (2018) Image correction via deep reciprocating hdr transformation, In: IEEE/CVF Conference on Computer Vision and Pattern Recognition 2018:1798–1807

  152. Celik T, Tjahjadi T (2011) Contextual and variational contrast enhancement. IEEE Trans Image Process 20(12):3431–3441

    Article  MathSciNet  MATH  Google Scholar 

  153. Chen SD, Ramli AR (2004) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 49(4):1310–1319

    Article  Google Scholar 

  154. Wang Zhou, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  155. Shannon CE (2001) A mathematical theory of communication. Bell Syst Tech J 5(3):3–55

    Google Scholar 

  156. Agaian SS, Silver B, Panetta KA (2007) Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans Image Process 16:741–758

    Article  MathSciNet  Google Scholar 

  157. Wang S, Zheng J, Hu HM, Li B (2013) Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process A Publ IEEE Signal Process Soc 22(9):3538–3548

    Article  Google Scholar 

  158. Kellman P, McVeigh ER (2005) Image reconstruction in snr units: a general method for snr measurement. Magn Reson Med 54(6):1439–1447

    Article  Google Scholar 

  159. Chen ZY, Abidi BR, Page DL, Abidi MA (2006) Gray-level grouping (glg): an automatic method for optimized image contrast enhancement–part i: the basic method., IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 15 (8) 2290–302

  160. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–444

    Article  Google Scholar 

  161. Yeganeh H, Wang Z (2013) Objective quality assessment of tone-mapped images. IEEE Trans Image Process A Publ IEEE Signal Process Soc 22(2):657–667

    Article  MathSciNet  MATH  Google Scholar 

  162. Zhang R, Isola P, Efros AA, Shechtman E,Wang O (2018) The unreasonable effectiveness of deep features as a perceptual metric, In: IEEE/CVF Conference on Computer Vision & Pattern Recognition

  163. Fu X, Zeng D, Huang Y, Liao Y, Ding X, Paisley J (2016) A fusion-based enhancing method for weakly illuminated images. Signal Process 129:82–96

    Article  Google Scholar 

  164. Ying Z, Li G, Gao W (2017) A bio-inspired multi-exposure fusion framework for low-light image enhancement, CoRR abs/1711.00591 arXiv:1711.00591

  165. Dong X, Pang YA, Wang G,Li W, Gao Y,Yang S, et al., A fast effecient algorithm for enhancement of low lighting video, J Inf Comput Sci 7 (10) 2021–2030

  166. Nakai K, Hoshi Y, Taguchi A, (2013) Color image contrast enhacement method based on differential intensity, saturation gray-levels histograms, In: International symposium on intelligent signal processing and communication systems. IEEE 2013:445–449

  167. Ren X, Li M, Cheng W-H, Liu J, Joint enhancement and denoising method via sequential decomposition, In: (2018) IEEE International Symposium on Circuits and Systems (ISCAS). IEEE 2018:1–5

  168. Ying Z, Li G, Ren Y, Wang R, Wang W (2017) A new low-light image enhancement algorithm using camera response model. In: Proceedings of the IEEE International Conference on Computer Vision Workshops 2017:3015–3022

  169. Wang R, Zhang Q, Fu C-W, Shen X, Zheng W-S, Jia J (2019) Underexposed photo enhancement using deep illumination estimation, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6849–6857

  170. Wang W, Wei C, Yang W, Liu J, Gladnet: Low-light enhancement network with global awareness, In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), IEEE, 2018, pp. 751–755

  171. Lore KG, Akintayo A, Sarkar S (2017) Llnet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognit 61:650–662

    Article  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (No.62061023 and 61961037), the Natural Science Foundation of Gansu Province (No.18JR3RA288) and the Fundamental Research Funds for the Central Universities of China (No.lzujbky-2017-it72).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yide Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Yang, Z., Sun, W. et al. A Comprehensive Overview of Image Enhancement Techniques. Arch Computat Methods Eng 29, 583–607 (2022). https://doi.org/10.1007/s11831-021-09587-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09587-6

Navigation