Skip to main content

Advertisement

Log in

LncRNA MEG3 induces endothelial differentiation of mouse derived adipose-derived stem cells by targeting MiR-145-5p/KLF4

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The present study aimed to investigate the mechanisms through which long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) affected the endothelial differentiation of mouse derived adipose-derived stem cells (ADSCs).

Materials and methods

ADSCs were isolated and identified by specific surface marker detection. The effects of lncRNA MEG3 on endothelial differentiation of ADSCs were also detected via quantitative PCR, western blotting, immunofluorescence and Matrigel angiogenesis assays. In addition, using target gene prediction tools and luciferase reporter assays, the downstream target gene was demonstrated.

Results

LncRNA MEG3 targeted and reduced the expression levels of microRNA-145-5p (miR-145-5p), which upregulated the expression levels of Krüppel like factor 4 (KLF4), promoting endothelial differentiation of ADSCs.

Conclusion

LncRNA MEG3 induced endothelial differentiation of ADSCs by targeting miR-145-5p/KLF4, which may provide novel insights to illustrate the mechanism of endothelial differentiation of ADSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. An Y, Lin S, Tan X, Zhu S, Nie F, Zhen Y, Gu L, Zhang C, Wang B, Wei W, Li D, Wu J (2021) Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif 54:e12993

    Article  CAS  Google Scholar 

  2. Brassard JA, Lutolf MP (2019) Engineering stem cell self-organization to build better organoids. Cell Stem Cell 24:860–876

    Article  CAS  Google Scholar 

  3. Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24:150–154

    Article  CAS  Google Scholar 

  4. Bukowska J, Szostek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcinska S, Gawronska-Kozak B (2021) Adipose-derived stromal/stem cells from large animal models: from basic to applied science. Stem Cell Rev Rep 17:719–738

    Article  Google Scholar 

  5. Zou ML, Liu SY, Sun ZL, Wu JJ, Yuan ZD, Teng YY, Feng Y, Yuan FL (2021) Insights into the role of adipose-derived stem cells: wound healing and clinical regenerative potential. J Cell Physiol 236:2290–2297

    Article  CAS  Google Scholar 

  6. Mazini L, Rochette L, Amine M, Malka G (2019) Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci 20:2523

    Article  CAS  Google Scholar 

  7. Han Y, Ren J, Bai Y, Pei X, Han Y (2019) Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int J Biochem Cell Biol 109:59–68

    Article  CAS  Google Scholar 

  8. He T, Yang J, Liu P, Xu L, Lu Q, Tan Q (2021) Research progress of adipose-derived stem cells in skin scar prevention and treatment. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 35:234–240

    PubMed  Google Scholar 

  9. Aich M, Chakraborty D (2020) Role of lncRNAs in stem cell maintenance and differentiation. Curr Top Dev Biol 138:73–112

    Article  CAS  Google Scholar 

  10. Mishra S, Verma SS, Rai V, Awasthee N, Chava S, Hui KM, Kumar AP, Challagundla KB, Sethi G, Gupta SC (2019) Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci 76:1947–1966

    Article  CAS  Google Scholar 

  11. Al-Rugeebah A, Alanazi M, Parine NR (2019) MEG3: an oncogenic long non-coding RNA in different cancers. Pathol Oncol Res 25:859–874

    Article  CAS  Google Scholar 

  12. Hsieh PF, Yu CC, Chu PM, Hsieh PL (2021) Long non-coding RNA MEG3 in cellular stemness. Int J Mol Sci 22:5348

    Article  CAS  Google Scholar 

  13. Sun H, Peng G, Wu H, Liu M, Mao G, Ning X, Yang H, Deng J (2020) Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed Rep 13:15–21

    Article  CAS  Google Scholar 

  14. Ghafouri-Fard S, Moghadam MHB, Shoorei H, Bahroudi Z, Taheri M, Taheriazam A (2021) The impact of non-coding RNAs on normal stem cells. Biomed Pharmacother 142:112050

    Article  CAS  Google Scholar 

  15. You D, Yang C, Huang J, Gong H, Yan M, Ni J (2019) Long non-coding RNA MEG3 inhibits chondrogenic differentiation of synovium-derived mesenchymal stem cells by epigenetically inhibiting TRIB2 via methyltransferase EZH2. Cell Signal 63:109379

    Article  CAS  Google Scholar 

  16. Li Z, Jin C, Chen S, Zheng Y, Huang Y, Jia L, Ge W, Zhou Y (2017) Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem 433:51–60

    Article  CAS  Google Scholar 

  17. Munoz M, Munoz MF, Ayala A (2017) Immunolocalization of substance P and NK-1 receptor in ADIPOSE stem cells. J Cell Biochem 118:4686–4696

    Article  CAS  Google Scholar 

  18. Tseng YC, Roan JN, Ho YC, Lin CC, Yeh ML (2017) An in vivo study on endothelialized vascular grafts produced by autologous biotubes and adipose stem cells (ADSCs). J Mater Sci Mater Med 28:166

    Article  Google Scholar 

  19. Yang Y, Cai Y, Zhang Y, Liu J, Xu Z (2018) Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen-glucose deprivation in vitro through microRNA-181b/TRPM7 axis. J Mol Neurosci 65:74–83

    Article  CAS  Google Scholar 

  20. Bento LW, Zhang Z, Imai A, Nor F, Dong Z, Shi S, Araujo FB, Nor JE (2013) Endothelial differentiation of SHED requires MEK1/ERK signaling. J Dent Res 92:51–57

    Article  CAS  Google Scholar 

  21. Sommerkamp P, Renders S, Ladel L, Hotz-Wagenblatt A, Schonberger K, Zeisberger P, Przybylla A, Sohn M, Zhou Y, Klibanski A, Cabezas-Wallscheid N, Trumpp A (2019) The long non-coding RNA Meg3 is dispensable for hematopoietic stem cells. Sci Rep 9:2110

    Article  Google Scholar 

  22. Huang X, Fu C, Liu W, Liang Y, Li P, Liu Z, Sheng Q, Liu P (2019) Chemerin-induced angiogenesis and adipogenesis in 3T3-L1 preadipocytes is mediated by lncRNA Meg3 through regulating Dickkopf-3 by sponging miR-217. Toxicol Appl Pharmacol 385:114815

    Article  CAS  Google Scholar 

  23. Chin DD, Poon C, Wang J, Joo J, Ong V, Jiang Z, Cheng K, Plotkin A, Magee GA, Chung EJ (2021) miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials 273:120810

    Article  CAS  Google Scholar 

  24. Zhu L, Zhang YJ, Wang B, Yang L, Zheng YQ, Sun LD, Tian L, Chen T, Wang JD (2021) PCDHB17P/miR-145-3p/MELK/NF-kappaB feedback loop promotes metastasis and angiogenesis of breast cancer. Front Oncol 11:660307

    Article  Google Scholar 

  25. Wang J, Lin Y, Jiang DH, Yang X, He XG (2021) CircRNA ZNF609 promotes angiogenesis in nasopharyngeal carcinoma by regulating miR-145/STMN1 axis. Kaohsiung J Med Sci 37:686–698

    Article  CAS  Google Scholar 

  26. Farina FM, Hall IF, Serio S, Zani S, Climent M, Salvarani N, Carullo P, Civilini E, Condorelli G, Elia L, Quintavalle M (2020) miR-128-3p is a novel regulator of vascular smooth muscle cell phenotypic switch and vascular diseases. Circ Res 126:e120–e135

    Article  CAS  Google Scholar 

  27. Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, Feng T, Wang Y, Lam KSL, Xu A (2019) Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 129:834–849

    Article  Google Scholar 

  28. Jiang F, Chen Q, Wang W, Ling Y, Yan Y, Xia P (2020) Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol 72:156–166

    Article  CAS  Google Scholar 

  29. Cantoni S, Bianchi F, Galletti M, Olivi E, Alviano F, Galie N, Ventura C (2015) Occurring of in vitro functional vasculogenic pericytes from human circulating early endothelial precursor cell culture. Stem Cells Int 2015:943671

    Article  Google Scholar 

  30. Windmolders S, De Boeck A, Koninckx R, Daniels A, De Wever O, Bracke M, Hendrikx M, Hensen K, Rummens JL (2014) Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident Cardiac Atrial appendage Stem Cells. J Mol Cell Cardiol 66:177–188

    Article  CAS  Google Scholar 

  31. Dong H, Jiang G, Zhang J, Kang Y (2021) MiR-506-3p promotes the proliferation and migration of vascular smooth muscle cells via targeting KLF4. Pathobiology 88:277–288

    Article  CAS  Google Scholar 

  32. Qiu ZH, He J, Chai TC, Zhang YL, Zhou H, Zheng H, Chen XS, Zhang L, Li YM, Chen LW (2021) miR-145 attenuates phenotypic transformation of aortic vascular smooth muscle cells to prevent aortic dissection. J Clin Lab Anal 35:e23773

    Article  CAS  Google Scholar 

  33. Gunasekharan V, Laimins LA (2013) Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J Virol 87:6037–6043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nanjing Berke Biology Co., Ltd. provided technical support of adipose-derived stem cell separation technology.

Funding

The present study was supported by the Traditional Chinese Medicine Research Project of Heilongjiang (Grant Nos. ZHY2020-041 and ZHY19-062).

Author information

Authors and Affiliations

Authors

Contributions

HZ conceived and designed the analysis. GL, BW and LY performed the experiments. XM and XY analyzed and interpreted the data. XY drafted the manuscript. HZ confirm the authenticity of all the raw data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bingyu Wang or Xingxing Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All operations were approved by the Ethics Research Committee of the Heilongjiang Academy of Traditional Chinese Medicine (permit no. SY3R-2019004; Harbin, China).

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2022_7671_MOESM1_ESM.tif

S1. Characterization of ADSCs. ADSCs were isolated from the adipose tissues. At the third passage, the expression levels of ADSCs markers (A) CD44 and CD90, and (B) CD31 and HLA-DR were analyzed via flow cytometry. ADSCs, adipose-derived stem cells; HLA-DR, major histocompatibility complex, class II antigen-associated. Supplementary file1 (TIF 4791 kb)

11033_2022_7671_MOESM2_ESM.tif

S2. Transfection efficiency in ADSCs. ADSCs were transfected with (A) sh-MEG3, (B) miR-145-5p mimic, (C) miR-145-5p inhibitor, (D) sh-KLF4 and (E) pc-MEG3 and qRT-PCR were conducted to measure the transfection efficiency 36 h post-transfection. Supplementary file2 (TIF 2081 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, G., Mao, X. et al. LncRNA MEG3 induces endothelial differentiation of mouse derived adipose-derived stem cells by targeting MiR-145-5p/KLF4. Mol Biol Rep 49, 8495–8505 (2022). https://doi.org/10.1007/s11033-022-07671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07671-z

Keywords

Navigation