Skip to main content

Advertisement

Log in

Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

lncRNAs are an emerging class of regulators involved in multiple biological processes. MEG3, an lncRNA, acts as a tumor suppressor, has been reported to be linked with osteogenic differentiation of MSCs. However, limited knowledge is available concerning the roles of MEG3 in the multilineage differentiation of hASCs. The current study demonstrated that MEG3 was downregulated during adipogenesis and upregulated during osteogenesis of hASCs. Further functional analysis showed that knockdown of MEG3 promoted adipogenic differentiation, whereas inhibited osteogenic differentiation of hASCs. Mechanically, MEG3 may execute its role via regulating miR-140-5p. Moreover, miR-140-5p was upregulated during adipogenesis and downregulated during osteogenesis in hASCs, which was negatively correlated with MEG3. In conclusion, MEG3 participated in the balance of adipogenic and osteogenic differentiation of hASCs, and the mechanism may be through regulating miR-140-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

lncRNA:

Long non-coding RNA

MSCs:

Mesenchymal stem cells

hASCs:

Human adipose-derived stem cells

MEG3 :

Maternally expressed gene 3

ncRNA:

Non-coding RNA

miRNA:

microRNA

BMP2 :

Bone morphogenetic protein 2

BMP4 :

Bone morphogenetic protein 4

ALP:

Alkaline phosphatase

ARS:

Alizarin red staining

OCN :

Osteocalcin

RUNX2 :

Runt-related transcription factor 2

CEBP/α :

CCAAT–enhancer-binding proteins-α

TGFβ :

Transforming growth factor β

PPARγ :

Peroxisome proliferator-activated receptor-γ

GAPDH :

Glyceraldehyde 3-phosphate dehydrogenase

References

  1. Rumman M, Dhawan J, Kassem M (2015) Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells 33(10):2903–2912. doi:10.1002/stem.2056

    Article  PubMed  Google Scholar 

  2. Muruganandan S, Roman AA, Sinal CJ (2009) Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: cross talk with the osteoblastogenic program. Cell Mol Life Sci 66(2):236–253. doi:10.1007/s00018-008-8429-z

    Article  CAS  PubMed  Google Scholar 

  3. Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W (2016) Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep 6:28897. doi:10.1038/srep28897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504. doi:10.1101/gad.1800909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartel D (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li J, Meng H, Bai Y, Wang K (2016) Regulation of lncRNA and its role in cancer metastasis. Oncol Res 23(5):205–217. doi:10.3727/096504016x14549667334007

    Article  PubMed  Google Scholar 

  7. Wang L, Wu F, Song Y, Li X, Wu Q, Duan Y, Jin Z (2016) Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients. Cell Death Dis 7(8):e2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2):357–364. doi:10.1002/stem.288

    PubMed  PubMed Central  Google Scholar 

  9. Zhang JF, Fu WM, He ML, Wang H, Wang WM, Yu SC, Bian XW, Zhou J, Lin MC, Lu G (2011) miR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 22(21):3955–3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jeong BC, Kang IH, Hwang YC, Kim SH, Koh JT (2014) MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression. Cell Death Dis 5:e1532. doi:10.1038/cddis.2014.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Divoux A, Karastergiou K, Xie H, Guo W, Perera RJ, Fried SK, Smith SR (2014) Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation. Obesity (Silver Spring) 22(8):1781–1785. doi:10.1002/oby.20793

    Article  CAS  Google Scholar 

  12. Li M, Sun X, Cai H, Sun Y, Plath M, Li C, Lan X, Lei C, Lin F, Bai Y, Chen H (2016) Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochim Biophys Acta 1859(7):871–882. doi:10.1016/j.bbagrm.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  13. Benetatos L, Vartholomatos G, Hatzimichael E (2011) MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 129(4):773–779

    Article  CAS  PubMed  Google Scholar 

  14. Wang P, Ren Z, Sun P (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113(6):1868–1874

    Article  CAS  PubMed  Google Scholar 

  15. Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U (2012) Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PLoS One 7(11):e49462. doi:10.1371/journal.pone.0049462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boon RA, Hofmann P, Michalik KM, Lozano-Vidal N, Berghauser D, Fischer A, Knau A, Jae N, Schurmann C, Dimmeler S (2016) Long noncoding RNA Meg3 controls endothelial cell aging and function: implications for regenerative angiogenesis. J Am Coll Cardiol 68(23):2589–2591. doi:10.1016/j.jacc.2016.09.949

    Article  PubMed  Google Scholar 

  17. Kameswaran V, Bramswig NC, Mckenna LB, Penn M, Schug J, Hand NJ, Chen Y, Choi I, Vourekas A, Won KJ (2014) Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 19(1):135–145

    Article  CAS  PubMed  Google Scholar 

  18. Zhuang W, Ge X, Yang S, Huang M, Zhuang W, Chen P, Zhang X, Fu J, Qu J, Li B (2015) Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells 33(6):1985–1997

    Article  CAS  PubMed  Google Scholar 

  19. Hwang S, Park SK, Lee HY, Kim SW, Lee JS, Choi EK, You D, Kim CS, Suh N (2014) miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett 588(17):2957–2963

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P, Liu Y, Jin C, Zhang M, Tang F, Zhou Y (2016) Histone acetyltransferase GCN5 regulates osteogenic differentiation of mesenchymal stem cells by inhibiting NF-kappaB. J Bone Miner Res 31(2):391–402. doi:10.1002/jbmr.2704

    Article  CAS  PubMed  Google Scholar 

  21. Ge W, Liu Y, Chen T, Zhang X, Lv L, Jin C, Jiang Y, Shi L, Zhou Y (2014) The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35(23):6015–6025. doi:10.1016/j.biomaterials.2014.04.055

    Article  CAS  PubMed  Google Scholar 

  22. Ge W, Shi L, Zhou Y, Liu Y, Ma GE, Jiang Y, Xu Y, Zhang X, Feng H (2011) Inhibition of osteogenic differentiation of human adipose-derived stromal cells by retinoblastoma binding protein 2 repression of RUNX2-activated transcription. Stem Cells 29(7):1112–1125. doi:10.1002/stem.663

    Article  CAS  PubMed  Google Scholar 

  23. Jia LF, Wei SB, Gan YH, Guo Y, Gong K, Mitchelson K, Cheng J, Yu GY (2014) Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma. Int J Cancer 135(10):2282–2293. doi:10.1002/ijc.28667

    Article  CAS  PubMed  Google Scholar 

  24. Greco EA, Lenzi A, Migliaccio S (2015) The obesity of bone. Ther Adv Endocrinol Metab 6(6):273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pino AM, Rosen CJ, Rodríguez JP (2012) In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res 45(3):279–287

    Article  CAS  PubMed  Google Scholar 

  26. Jeong BC, Kang IH, Hwang YC, Kim SH, Koh JT (2014) MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression. Cell Death Dis 5(5):e1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu HZ, Wang QY, Zhang Y, Qi DT, Li MW, Guo WQ, Ma YH, Wang LY, Chen Y, Gao CY (2016) Pioglitazone up-regulates long non-coding RNA MEG3 to protect endothelial progenitor cells via increasing HDAC7 expression in metabolic syndrome. Biomed Pharmacother 78:101–109. doi:10.1016/j.biopha.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  28. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3(6):379–389. doi:10.1111/j.1474-9728.2004.00127.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gómezbarrena E, Rosset P, Müller I, Giordano R, Bunu C, Layrolle P, Konttinen YT, Luyten FP (2011) Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med 15(6):1266–1286

    Article  Google Scholar 

  30. Wei CC, Lin AB, Hung SC (2014) Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: bench, bedside, and industry. Cell Transplant 23(4–5):505–512. doi:10.3727/096368914x678328

    Article  PubMed  Google Scholar 

  31. Liao HT, Chen CT (2014) Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells. World J Stem Cells 6(3):288–295. doi:10.4252/wjsc.v6.i3.288

    Article  PubMed  PubMed Central  Google Scholar 

  32. Monaco E, Bionaz M, Rodriguez-Zas S, Hurley WL, Wheeler MB (2012) Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One 7(3):e32481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park SH, Sim WY, Min BH, Yang SS, Khademhosseini A, Kaplan DL (2012) Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS One 7(9):e46689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21(14):2724–2752

    Article  CAS  PubMed  Google Scholar 

  35. Noël D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, Jorgensen C, Cousin B (2008) Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 314(7):1575

    Article  PubMed  Google Scholar 

  36. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68(5):879–887

    Article  CAS  PubMed  Google Scholar 

  37. Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5(8):442

    Article  CAS  PubMed  Google Scholar 

  38. Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y (2015) miR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 6(8):e1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilusz JE (2016) Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta 1859(1):128–138. doi:10.1016/j.bbagrm.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  41. Housman G, Ulitsky I (2016) Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs. Biochim Biophys Acta 1859(1):31–40. doi:10.1016/j.bbagrm.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  42. Jin C, Jia L, Huang Y, Zheng Y, Du N, Liu Y, Zhou Y (2016) Inhibition of lncRNA MIR31HG promotes osteogenic differentiation of human adipose-derived stem cells. Stem Cells 34(11):2707–2720

    Article  CAS  PubMed  Google Scholar 

  43. Nie FQ, Zhu Q, Xu TP, Zou YF, Xie M, Sun M, Xia R, Lu KH (2014) Long non-coding RNA MVIH indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion. Tumor Biol 35(8):7587–7594

    Article  CAS  Google Scholar 

  44. Zhang J, Yao T, Wang Y, Yu J, Liu Y, Lin Z (2016) Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther 17(1):104–113. doi:10.1080/15384047.2015.1108496

    Article  PubMed  Google Scholar 

  45. Peng W, Si S, Zhang Q, Li C, Zhao F, Wang F, Yu J, Ma R (2015) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. J Exp Clin Cancer Res 34(1):1–10

    Article  CAS  Google Scholar 

  46. Zheng L, Zhang Y, Lin S, Sun A, Chen R, Ding Y, Ding Y (2015) Down-regualtion of miR-106b induces epithelial-mesenchymal transition but suppresses metastatic colonization by targeting Prrx1 in colorectal cancer. Int J Clin Exp Pathol 8(9):10534–10544

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu HZ, Wang QY, Zhang Y, Qi DT, Li MW, Guo WQ, Ma YH, Wang LY, Chen Y, Gao CY (2016) Pioglitazone up-regulates long non-coding RNA MEG3 to protect endothelial progenitor cells via increasing HDAC7 expression in metabolic syndrome. Biomed Pharmacother 78:101–109

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Chang A, Li Y, Gao Y, Wang H, Ma Z, Li X, Wang B (2015) miR-140-5p regulates adipocyte differentiation by targeting transforming growth factor-β signaling. Sci Rep 5(2):18118

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

ZL and CJ: performed the experiments and wrote the paper; SC, YZ, and YH: revised the paper, collection and assembly of the data; LJ and WG: conception and design, financial support, and final approval of the manuscript. YZ: financial support, revised the paper, and final approval of the manuscript.

Funding

This study was financially supported by grants from the National Natural Science Foundation of China (81371118, 81200763, 81670963), the Ph.D. Programs Foundation of Ministry of Education of China (20130001110101), the Project for Culturing Leading Talents in Scientific and Technological Innovation of Beijing (Z171100001117169), and the grant of Peking University School and Hospital of Stomatology (PKUSS20140104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingfei Jia or Wenshu Ge.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Zheng Li and Chanyuan Jin have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2017_3015_MOESM1_ESM.tif

Supplementary Fig. 1 (a) Micrographs of GFP-positive hASCs under ordinary and fluorescent light in hASCs transfected with miR-140-5p, anti-miR-140-5p, and the scrambled vectors (miR-NC, anti-NC). Scale bar: 500 μm (b) H&E staining, Masson’s trichrome staining in the sh-MEG3 and NC groups. Scale bar: 50 μm. Data are shown as the mean ± SD (*P < 0.05). (TIF 10510 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Jin, C., Chen, S. et al. Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem 433, 51–60 (2017). https://doi.org/10.1007/s11010-017-3015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3015-z

Keywords

Navigation