Skip to main content
Log in

Structural and functional analysis of CCT family genes in pigeonpea

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Pigeonpea (Cajanus cajan L.) is a photoperiod-sensitive short-day plant. Understanding the flowering-related genes is critical to developing photoperiod insensitive cultivars.

Methods

The CCT family genes were identified using ‘CCT DOMAIN PROTEIN’ as a keyword and localized on the chromosomes using the BLAST search option available at the LIS database. The centromeric positions were identified through BLAST search using the centromeric repeat sequence of C. cajan as a query against the chromosome-wise FASTA files downloaded from the NCBI database. The CCT family genes were classified based on additional domains and/or CCT domains. The orthologous and phylogenetic relationships were inferred using the OrthoFinder and MEGA 10.1 software, respectively. The CCT family genes′ expression level in photoperiod-sensitive and insensitive genotypes was compared using RNA-seq data and qRT-PCR analysis.

Results

We identified 33 CCT family genes in C. cajan distributed on ten chromosomes and nine genomic scaffolds. They were classified into CMF-type, COL-type, PRR-type, and GTCC- type. The CCT family genes of legumes exhibited an extensive orthologous relationship. Glycine max showed the maximum similarity of CCT family genes with C. cajan. The expression analysis of CCT family genes using photoperiod insensitive (ICP20338) and photoperiod sensitive (MAL3) genotypes of C. cajan demonstrated that CcCCT4 and CcCCT23 are the active CONSTANS in ICP20338. In contrast, only CcCCT23 is active in MAL3.

Conclusion

The CCT family genes in C. cajan vary considerably in structure and domain types. They are maximally similar to soybean’s CCT family genes. The differential photoperiod response of pigeonpea genotypes, ICP20338 and MAL3, is possibly due to the difference in the number and types of active CONSTANS in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Zhang S, Yang C, Peng J, Sun S, Wang X (2009) GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol Biol 69(6):745–759. https://doi.org/10.1007/s11103-009-9452-7

    Article  CAS  PubMed  Google Scholar 

  2. Trevaskis B, Hemming MN, Dennis ES et al (2007) The molecular basis of vernalization induced flowering in cereals. Trends Plant Sci 12:352–357. https://doi.org/10.1016/j.tplants.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  3. Agliassa C, Narayana R, Bertea CM et al (2018) Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 39:361–374. https://doi.org/10.1002/bem.22123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song YH, Shim JS, Kinmonth-Schultz HA et al (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Korea Annu Rev Plant Biol 66:441–464. https://doi.org/10.1146/annurev-arplant-043014-1155555

    Article  CAS  Google Scholar 

  5. Putterill JJ, Robson F, Lee K et al (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857. https://doi.org/10.1016/0092-8674(95)90288-0

    Article  CAS  PubMed  Google Scholar 

  6. Corbesier L, Vincent C, Jang S et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. https://doi.org/10.1126/science.1141752

    Article  CAS  PubMed  Google Scholar 

  7. Eliezer L, Brian A, Yuval E (2014) Florigen and anti-florigen—a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci 5:465. https://doi.org/10.3389/fpls.2014.00465

    Article  Google Scholar 

  8. Tamaki S, Matsuo S, Wong HL et al (2007) Hd3a Protein is a mobile flowering signal in rice. Science 316:1033–1036. https://doi.org/10.1126/science.1141753

    Article  CAS  PubMed  Google Scholar 

  9. Cheng X, Li G, Tang Y et al (2018) Dissection of genetic regulation of compound inflorescence development in Medicago truncatula. Development 145(3):dev158766. https://doi.org/10.1242/dev.158766

    Article  CAS  PubMed  Google Scholar 

  10. Taoka K, Ohki I, Tsuji H et al (2011) 14–3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335. https://doi.org/10.1038/nature10272

    Article  CAS  PubMed  Google Scholar 

  11. Golembeski GS, Imaizumi T (2015) Photoperiodic regulation of florigen function in Arabidopsis thaliana. Arabidopsis Book/Am Soc Plant Biol 13:e0178. https://doi.org/10.1199/tab.0178

    Article  Google Scholar 

  12. David KM, Armbruster U, Tama N et al (2006) Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark. FEBS Lett 580:1193–1197. https://doi.org/10.1016/j.febslet.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  13. Niwa Y, Ito S, Nakamichi N et al (2007) Genetic linkages of the circadian clock associated genes TOC1 CCA1 and LHY in the photoperiodic control of flowering time in Arabidopsis thaliana. Plant Cell Physiol 48:925–937. https://doi.org/10.1093/pcp/pcm067

    Article  CAS  PubMed  Google Scholar 

  14. Sawa M, Nusinow DA, Kay SA et al (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265. https://doi.org/10.1126/science.1146994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fornara F, Panigrahi KCS, Gissot L et al (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86. https://doi.org/10.1016/j.devcel.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  16. Nakamichi N, Kiba T, Henriques R et al (2010) PSEUDO-RESPONSE REGULATORS 9 7 and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22:594–605. https://doi.org/10.1105/tpc.109.072892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. An H, Roussot C, Suarez LP et al (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626. https://doi.org/10.1242/dev.01231

    Article  CAS  PubMed  Google Scholar 

  18. Khanna R, Kronmiller B, Maszle DR et al (2009) The Arabidopsis B-Box Zinc finger family. Plant Cell 21:3416–3420. https://doi.org/10.1105/tpc.109.069088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Xu M (2017) CCT family genes in cereal crops: a current overview. Crop J 5:449–458. https://doi.org/10.1016/j.cj.2017.07.001

    Article  Google Scholar 

  20. Gao H, Jin M, Zheng XM et al (2014) Days to heading-7 a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci 111:16337–16342. https://doi.org/10.1073/pnas.1418204111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beales J, Turner A, Griffiths S et al (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733. https://doi.org/10.1007/s00122-007-0603-4

    Article  CAS  PubMed  Google Scholar 

  22. Fuller DQ, Murphy C, Kingwell-Banham E et al (2019) Cajanus cajan (L.) Millsp. origins and domestication: the South and Southeast Asian archaeobotanical evidence. Genet Resour Crop Evol 66:1175–1188. https://doi.org/10.1007/s10722-019-00774-w

    Article  CAS  Google Scholar 

  23. Srivarsha J, Jahagirdar JE, Kumar CVS et al (2018) Performance of parents and hybrids of pigeonpea (Cajanus cajan (L.) Millsp.) in terms of yield and yield contributing characters. Int J Pure App Biosci 6(1):1271–1275

    Article  Google Scholar 

  24. Velez-Colon R, Garrison SA (1998) Growth maturity and flowering of pigeon peas (Cajanus cajan L. Millsp.) at high latitudes. J Agric Univ 73:223–229

    Google Scholar 

  25. Tribhuvan KU, Das A, Srivastava H et al (2020) Identification and characterization of PEBP family genes reveal CcFT8 a probable candidate for photoperiod insensitivity in C. cajan. 3 Biotech 10:194. https://doi.org/10.1007/s13205-020-02180-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Li Q, Dong H et al (2015) Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Sci Rep 5:7663. https://doi.org/10.1038/srep07663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. https://doi.org/10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  28. Melters DP, Bradnam KR, Young HA et al (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10. https://doi.org/10.1186/gb-2013-14-1-r10

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–2154. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng X, Li X, Ge C et al (2017) Characterization of the CCT family and analysis of gene expression in Aegilops tauschii. PLoS ONE 12(12):e0189333. https://doi.org/10.1371/journal.pone.0189333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cockram J, Thiel T, Steuernagel B et al (2012) Genome dynamics explain the evolution of flowering time CCT domain gene families in the poaceae. PLoS ONE 7(9):e45307. https://doi.org/10.1371/journal.pone.0045307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shoemaker R, Olson T, Kanazin V (1996) Soybean genome organization: evolution of a legume genome. In: Gustafson JP, Flavell RB (eds) Genomes of plants and animals. Stadler genetics symposia series. Springer, Boston. https://doi.org/10.1007/978-1-4899-0280-1_11

    Chapter  Google Scholar 

  33. Zahn-Zabal M, Dessimoz C, Glover NM (2020) Identifying orthologs with OMA: a primer. F1000Research 9:27. https://doi.org/10.12688/f1000research.21508.1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341. https://doi.org/10.1038/35072009

    Article  CAS  PubMed  Google Scholar 

  35. Nowak MA, Boerlijst MC, Cooke J et al (1997) Evolution of genetic redundancy. Nature 338:167–171. https://doi.org/10.1038/40618

    Article  CAS  Google Scholar 

  36. Taverna DM, Goldstein RM (2000) The evolution of duplicated genes considering protein stability constraints. Pacific Symposium on Biocomputing. World Scientific, Singapore, pp 69–80

    Google Scholar 

  37. Wagner A (2000) The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics 154:1389–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Force A, Lynch M, Pickett FB et al (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee C, Yu D, Choi HK et al (2017) Reconstruction of a composite comparative map composed of ten legume genomes. Genes Genom 39(1):111–119. https://doi.org/10.1007/s13258-016-0481-8

    Article  CAS  Google Scholar 

  40. Tsuji H, Taoka K (2014) Chapter five-florigen signaling. In: Machida Y, Lin C, Tamanoi F (eds) The enzymes, vol 35. Academic Press, Cambridge, pp 113–144. https://doi.org/10.1016/B978-0-12-801922-1.00005-1

    Chapter  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the Director, ICAR-NIPB, New Delhi; Director, ICAR-IARI, New Delhi; Director, ICAR-IIAB, Ranchi; and the Incharge, National Phytotron Facility, ICAR- IARI, New Delhi for providing the necessary facilities to carry out the research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KG and NKS designed the work. KUT, HS, and TK conducted the experiments. BKS, AD, KK, KD and RJ analyzed and interpreted the data and wrote and revised the manuscript critically. All the authors read the manuscript and approved the final version for publication.

Corresponding author

Correspondence to Kishor Gaikwad.

Ethics declarations

Conflict of interest

The author(s) declare no competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tribhuvan, K.U., Kaila, T., Srivastava, H. et al. Structural and functional analysis of CCT family genes in pigeonpea. Mol Biol Rep 49, 217–226 (2022). https://doi.org/10.1007/s11033-021-06860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06860-6

Keywords

Navigation