Skip to main content

Advertisement

Log in

VD3 and LXR agonist (T0901317) combination demonstrated greater potency in inhibiting cholesterol accumulation and inducing apoptosis via ABCA1-CHOP-BCL-2 cascade in MCF-7 breast cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Obesity is associated with hypercholesterolemia and is a global epidemic. Epidemiological and animal studies revealed cholesterol is an essential regulator of estrogen receptor positive (ER+) breast cancer progression while inhibition of cholesterol accumulation was found to prevent breast tumor growth. Individually, vitamin D and LXR agonist T0901317 showed anticancer properties. The present study investigated the effects of vitamin D3 (VD3, calcitriol), LXR agonist (T0901317) and a combination of VD3 + T0901317 on cholesterol metabolism and cancer progression in ER+ breast cancer (MCF-7) cells. VD3 or T0901317 alone reduced cholesterol accumulation significantly in MCF-7 cells concomitant with an induction of ABCA1 protein and gene expression compared to the control treatment. Most importantly, VD3 + T0901317 combination showed higher effects in reducing cholesterol levels and increasing ABCA1 protein and gene expression compared to individual treatments. Importantly, VD3 + T0901317 combination showed higher effects in increasing apoptosis as measured by annexin apoptosis assay, cell viability and was associated with induction of CHOP protein and gene expression. Additionally, the VD3 + T0901317 exerted higher effects in reducing antiapoptotic BCL-2 while increased pro-apoptotic BAX gene expression compared to the individual treatments. The present results suggest that VD3 and T0901317 combination may have an important therapeutic application to prevent obesity and hyperlipidemia mediated ER+ breast cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LXR:

Liver X receptor

ER+:

Estrogen receptor positive

ABCA1:

ATP binding cassette subfamily A member 1

27-HC:

27-Hydroxycholesterol

CHOP:

CCAAT/enhancer-binding protein (C/EBP) homologous protein

VD3 :

Vitamin D3

VDR:

Vitamin D receptor

References

  1. Kitahara CM, Berrington de González A, Freedman ND, Huxley R, Mok Y, Jee SH, Samet JM (2011) Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol 29(12):1592–1598. https://doi.org/10.1200/JCO.2010.31.5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bianchini F, Kaaks R, Vainio H (2002) Overweight, obesity, and cancer risk. Lancet Oncol 3(9):565–574

    Article  Google Scholar 

  3. Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang TH, Li N, Gomez-Cabrero A, Reisfeld RA, Xiang R (2014) MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene 33(23):3014–3023

    Article  CAS  Google Scholar 

  4. Dunnwald LK, Rossing MA, Li CI (2007) Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res 9(1):R6

    Article  Google Scholar 

  5. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics for hispanics/latinos. CA 62(5):283–298

    PubMed  Google Scholar 

  6. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Long J, Zhang C-J, Zhu N, Du K, Yin Y-F, Tan X, Liao D-F, Qin L (2018) Lipid metabolism and carcinogenesis, cancer development. Am J Cancer Res 8(5):778–791

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vrieling A, Buck K, Kaaks R, Chang-Claude J (2010) Adult weight gain in relation to breast cancer risk by estrogen and progesterone receptor status: a meta-analysis. Breast Cancer Res Treat 123(3):641–649. https://doi.org/10.1007/s10549-010-1116-4

    Article  CAS  PubMed  Google Scholar 

  9. Gostynski M, Gutzwiller F, Kuulasmaa K, Döring A, Ferrario M, Grafnetter D, Pajak A (2004) Analysis of the relationship between total cholesterol, age, body mass index among males and females in the WHO MONICA Project. Int J Obes Relat Metab Disord 28(8):1082–1090

    Article  CAS  Google Scholar 

  10. Capasso I, Esposito E, Pentimalli F, Crispo A, Montella M, Grimaldi M, De Marco M, Cavalcanti E, D'Aiuto M, Fucito A, Frasci G, Maurea N, Esposito G, Pedicini T, Vecchione A, D'Aiuto G, Giordano A (2010) Metabolic syndrome affects breast cancer risk in postmenopausal women: National Cancer Institute of Naples experience. Cancer Biol Ther 10(12):1240–1243

    Article  CAS  Google Scholar 

  11. Pelton K, Coticchia CM, Curatolo AS, Schaffner CP, Zurakowski D, Solomon KR, Moses MA (2014) Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo. Am J Pathol 184(7):2099–2110. https://doi.org/10.1016/j.ajpath.2014.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, Baehner F, Kumar AS, Adduci K, Marx C, Petricoin EF, Liotta LA, Winters M, Benz S, Benz CC (2006) Breast cancer growth prevention by statins. Can Res 66(17):8707–8714

    Article  CAS  Google Scholar 

  13. Holick MF (1688S) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 80(6 Suppl):1678S–1688S. https://doi.org/10.1093/ajcn/80.6.1678S

    Article  CAS  PubMed  Google Scholar 

  14. Earthman CP, Beckman LM, Masodkar K (2005) Sibley SD (2012) The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes 36(3):387–396. https://doi.org/10.1038/ijo.2011.119

    Article  CAS  Google Scholar 

  15. Chiu KC, Chu A, Go VLW, Saad MF (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 79(5):820–825

    Article  CAS  Google Scholar 

  16. Giulietti A, van Etten E, Overbergh L, Stoffels K, Bouillon R, Mathieu C (2007) Monocytes from type 2 diabetic patients have a pro-inflammatory profile: 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract 77(1):47–57

    Article  CAS  Google Scholar 

  17. Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B, Proctor BM, Petty M, Chen Z, Schechtman KB, Bernal-Mizrachi L, Bernal-Mizrachi C (2009) 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation 120(8):687–698. https://doi.org/10.1161/CIRCULATIONAHA.109.856070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santos JM, Khan ZS, Munir MT, Tarafdar K, Rahman SM, Hussain F (2018) Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells. J Nutr Biochem 53:111–120. https://doi.org/10.1016/j.jnutbio.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  19. Krishnan AV, Trump DL, Johnson CS, Feldman D (2012) The role of vitamin D in cancer prevention and treatment. Rheum Dis Clin North Am 38(1):161–178. https://doi.org/10.1016/j.rdc.2012.03.014

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mawer EB, Walls J, Howell A, Davies M, Ratcliffe WA, Bundred NJ (1997) Serum 1,25-dihydroxyvitamin D may be related inversely to disease activity in breast cancer patients with bone metastases. J Clin Endocrinol Metab 82(1):118–122

    CAS  PubMed  Google Scholar 

  21. Going CC, Alexandrova L, Lau K, Yeh CY, Feldman D, Pitteri SJ (2018) Vitamin D supplementation decreases serum 27-hydroxycholesterol in a pilot breast cancer trial. Breast Cancer Res Treat 167(3):797–802

    Article  CAS  Google Scholar 

  22. Michael DR, Ashlin TG, Buckley ML, Ramji DP (2012) Liver X receptors, atherosclerosis and inflammation. Curr Atheroscler Rep 14(3):284–293

    Article  CAS  Google Scholar 

  23. Fessler MB (2008) Liver X receptor: crosstalk node for the signaling of lipid metabolism, carbohydrate metabolism, and innate immunity. Curr Signal Transduct Ther 3(2):75–81

    Article  CAS  Google Scholar 

  24. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383(6602):728–731

    Article  CAS  Google Scholar 

  25. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B (2000) Role of LXRs in control of lipogenesis. Genes Dev 14(22):2831–2838

    Article  CAS  Google Scholar 

  26. Collins JL, Fivush AM, Watson MA, Galardi CM, Lewis MC, Moore LB, Parks DJ, Wilson JG, Tippin TK, Binz JG, Plunket KD, Morgan DG, Beaudet EJ, Whitney KD, Kliewer SA, Willson TM (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem 45(10):1963–1966

    Article  CAS  Google Scholar 

  27. Nguyen-Vu T, Vedin L-L, Liu K, Jonsson P, Lin JZ, Candelaria NR, Candelaria LP, Addanki S, Williams C, Gustafsson J-Å, Steffensen KR, Lin C-Y (2013) Liver × receptor ligands disrupt breast cancer cell proliferation through an E2F-mediated mechanism. Breast Cancer Res 15(3):R51. https://doi.org/10.1186/bcr3443

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fukuchi J, Kokontis JM, Hiipakka RA, Chuu C-P, Liao S (2004) Antiproliferative effect of liver X receptor agonists on LNCaP human prostate cancer cells. Can Res 64(21):7686–7689

    Article  CAS  Google Scholar 

  29. El Roz A, Bard J-M, Huvelin J-M, Nazih H (2012) LXR agonists and ABCG1-dependent cholesterol efflux in MCF-7 breast cancer cells: relation to proliferation and apoptosis. Anticancer Res 32(7):3007–3013

    PubMed  Google Scholar 

  30. Yvan-Charvet L, Wang N, Tall AR (2010) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30(2):139–143

    Article  CAS  Google Scholar 

  31. Bi D-P, Yin C-H, Zhang X-Y, Yang N-N, Xu J-Y (2016) MiR-183 functions as an oncogene by targeting ABCA1 in colon cancer. Oncol Rep 35(5):2873–2879

    Article  CAS  Google Scholar 

  32. Sharma M, Tuaine J, McLaren B, Waters DL, Black K, Jones LM, McCormick SPA (2016) Chemotherapy agents alter plasma lipids in breast cancer patients and show differential effects on lipid metabolism genes in liver cells. PLoS ONE 11(1):e0148049

    Article  Google Scholar 

  33. Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B (2017) Transcription factor C/EBP homologous protein in health and diseases. Front Immunol 8:1612

    Article  Google Scholar 

  34. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63. https://doi.org/10.1038/nrm3722

    Article  CAS  Google Scholar 

  35. Dessì S, Batetta B, Pulisci D, Spano O, Anchisi C, Tessitore L, Costelli P, Baccino FM, Aroasio E, Pani P (1994) Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer. Cancer 73(2):253–258

    Article  Google Scholar 

  36. Benn M, Tybjærg-Hansen A, Stender S, Frikke-Schmidt R, Nordestgaard BG (2011) Low-density lipoprotein cholesterol and the risk of cancer: a mendelian randomization study. J Natl Cancer Inst 103(6):508–519. https://doi.org/10.1093/jnci/djr008

    Article  CAS  PubMed  Google Scholar 

  37. Kaneko T, Kanno C, Ichikawa-Tomikawa N, Kashiwagi K, Yaginuma N, Ohkoshi C, Tanaka M, Sugino T, Imura T, Hasegawa H, Chiba H (2015) Liver X receptor reduces proliferation of human oral cancer cells by promoting cholesterol efflux via up-regulation of ABCA1 expression. Oncotarget 6(32):33345–33357. https://doi.org/10.18632/oncotarget.5428

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xiong T, Xu G, Huang X-L, Lu K-Q, Xie W-Q, Yin K, Tu J (2018) ATP-binding cassette transporter A1: a promising therapy target for prostate cancer. Mol Clin Oncol 8(1):9–14. https://doi.org/10.3892/mco.2017.1506

    Article  CAS  PubMed  Google Scholar 

  39. Bruhat A, Jousse C, Wang XZ, Ron D, Ferrara M, Fafournoux P (1997) Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J Biol Chem 272(28):17588–17593

    Article  CAS  Google Scholar 

  40. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389

    Article  CAS  Google Scholar 

  41. Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, Djaballah H, Kanai M, Cheng EH, Judkins AR, Pawel B, Baggs J, Cherry S, Rabinowitz JD, Thompson CB (2014) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 56(2):205–218. https://doi.org/10.1016/j.molcel.2014.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Merino D, Lok SW, Visvader JE, Lindeman GJ (2016) Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene 35(15):1877–1887. https://doi.org/10.1038/onc.2015.287

    Article  CAS  PubMed  Google Scholar 

  43. Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, Stuart RK, Spicer EK, Fernandes DJ (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109(7):3069–3075

    Article  CAS  Google Scholar 

  44. Dawson SJ, Makretsov N, Blows FM, Driver KE, Provenzano E, Le Quesne J, Baglietto L, Severi G, Giles GG, McLean CA, Callagy G, Green AR, Ellis I, Gelmon K, Turashvili G, Leung S, Aparicio S, Huntsman D, Caldas C, Pharoah P (2010) BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer 103(5):668–675. https://doi.org/10.1038/sj.bjc.6605736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim J-H, Kim YC, Park B (2016) Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors. Oncol Rep 35(2):1020–1026. https://doi.org/10.3892/or.2015.4440

    Article  CAS  PubMed  Google Scholar 

  46. Trivedi R, Maurya R, Mishra DP (2014) Medicarpin, a legume phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the induction of DR5 and activation of the ROS-JNK-CHOP pathway. Cell Death Dis 5:e1465. https://doi.org/10.1038/cddis.2014.429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen Y-J, Su J-H, Tsao C-Y, Hung C-T, Chao H-H, Lin J-J, Liao M-H, Yang Z-Y, Huang HH, Tsai F-J, Weng S-H, Wu Y-J (2013) Sinulariolide induced hepatocellular carcinoma apoptosis through activation of mitochondrial-related apoptotic and PERK/eIF2α/ATF4/CHOP pathway. Molecules (Basel, Switzerland) 18(9):10146–10161. https://doi.org/10.3390/molecules180910146

    Article  CAS  Google Scholar 

  48. Huss L, Butt ST, Borgquist S, Elebro K, Sandsveden M, Rosendahl A, Manjer J (2019) Vitamin D receptor expression in invasive breast tumors and breast cancer survival. Breast Cancer Res 21(1):84. https://doi.org/10.1186/s13058-019-1169-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Munir MT, Ponce C, Powell CA, Tarafdar K, Yanagita T, Choudhury M, Gollahon LS, Rahman SM (2018) The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer. J Steroid Biochem Mol Biol 183:1–9. https://doi.org/10.1016/j.jsbmb.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  50. Wilmanski T, Buhman K, Donkin SS, Burgess JR, Teegarden D (2017) 1α,25-dihydroxyvitamin D inhibits de novo fatty acid synthesis and lipid accumulation in metastatic breast cancer cells through down-regulation of pyruvate carboxylase. J Nutr Biochem 40:194–200. https://doi.org/10.1016/j.jnutbio.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  51. Lewis KA, Jordan HR, Tollefsbol TO (2019) Effects of SAHA and EGCG on growth potentiation of triple-negative breast cancer cells. Cancers 11(1):23

    Article  CAS  Google Scholar 

  52. Farabegoli F, Govoni M, Spisni E, Papi A (2017) EGFR inhibition by (-)-epigallocatechin-3-gallate and IIF treatments reduces breast cancer cell invasion. Biosci Rep 37(3):27–89

    Article  Google Scholar 

  53. García-Quiroz J, García-Becerra R, Santos-Cuevas C, Ramírez-Nava GJ, Morales-Guadarrama G, Cárdenas-Ochoa N, Segovia-Mendoza M, Prado-Garcia H, Ordaz-Rosado D, Avila E (2019) Synergistic antitumorigenic activity of calcitriol with curcumin or resveratrol is mediated by angiogenesis inhibition in triple negative breast cancer xenografts. Cancers 11(11):1739

    Article  Google Scholar 

  54. Paul B, Li Y, Tollefsbol TO (2018) The effects of combinatorial genistein and sulforaphane in breast tumor inhibition: role in epigenetic regulation. Int J Mol Sci 19(6):1754

    Article  Google Scholar 

Download references

Acknowledgements

MTM was supported by Doctoral Dissertation Completion Fellowship and Presidential NRUF Research Fellowship provided by Texas Tech University. CP was supported by Center for the Integration of STEM Education & Research (CISER), Texas Tech University. FH was partially supported by Texas Tech University President's Distinguished Chair Fund.

Author information

Authors and Affiliations

Authors

Contributions

SMR designed and supervised the project. MTM and CP performed experiments and analyzed data. All authors took part in data interpretation and manuscript preparation. The final manuscript was reviewed and approved by all authors.

Corresponding author

Correspondence to Shaikh Mizanoor Rahman.

Ethics declarations

Conflict of interest

The authors don’t have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, M.T., Ponce, C., Santos, J.M. et al. VD3 and LXR agonist (T0901317) combination demonstrated greater potency in inhibiting cholesterol accumulation and inducing apoptosis via ABCA1-CHOP-BCL-2 cascade in MCF-7 breast cancer cells. Mol Biol Rep 47, 7771–7782 (2020). https://doi.org/10.1007/s11033-020-05854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05854-0

Keywords

Navigation