Skip to main content
Log in

Phenotypic and genotypic methods for identification of slime layer production, efflux pump activity, and antimicrobial resistance genes as potential causes of the antimicrobial resistance of some mastitis pathogens from farms in Menoufia, Egypt

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mastitis caused by multi- or pan-drug resistant bacteria is a growing health concern. A total of 110 milk samples were collected: Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae, Enterococcus faecalis, and Escherichia coli were present in 54/110 (49.09%), 37/110 (33.63%), 25/110 (22.72%), 7/110 (6.36%), and 50/110 (45.45%) samples, respectively. A total of 20 methicillin-resistant S. aureus (MRSA) isolates, 19 Streptococcus sp. isolates, and 15 E. coli isolates were selected, and 100% were positive for (coagulase and hemolysins), streptokinase, and hemolytic activity, respectively. A number of 11 E. coli isolates were serotyped, and the serotypes were: O26, O55, O111, O119, O124, O125, O127, and O158. The antimicrobial resistance index ranges for MRSA, Streptococcus sp., and E. coli were 0.49–0.83, 0.39–0.83, and 0.56–1, respectively. The most effective antimicrobials on Gram-positive isolates were cephradine, ciprofloxacin, doxycycline, norfloxacin, and vancomycin, while doxycycline and norfloxacin were effective on E. coli serotypes. All of the selected isolates exhibited slime layer production. The efflux pumps of the 12 MRSA, 12 Streptococcus sp., and 11 E. coli isolates exhibited activity with ethidium bromide concentrations of 1, 1.5, and 0.5 µg/ml, respectively. There was a simultaneous antimicrobial activity of the efflux pump inhibitor chlorpromazine with amoxicillin/clavulanic acid, erythromycin, and oxacillin, to which the isolates were resistant. The 12 MRSA isolates harboured the methicillin resistance genes mec(A,A1, and A2), mecA1, and mecC at frequencies of 9/12 (75%), 9/12 (75%), and 8/12 (66.7%), respectively, and the penicillin resistance gene BlaZ was present at a frequency of 5/12 (41.7%). The distributions of erm(A), erm(B), erm(C), erm(F), erm(G), and erm(Q) were 8/12 (66.7%), 5/12 (41.7%), 12/12 (100%), 2/12 (16.7%), 0/12 (0.0%), and 8/12 (66.7%), respectively. The 12 Streptococcus sp. isolates harboured mec(A, A1, and A2), mecA1, mecC, and blaZ at rates of 4/12 (33.33%), 4/12 (33.33%), 5/12 (41.7%), and 4/12 (33.33%), respectively. The frequencies of erm(A) and erm(F) were 4/12 (33.33%), and 9/12 (75%), respectively. The 11 E. coli isolates harboured the extended-spectrum β-lactamases integrase1, integrase2, blaCTX-M, blaCTX-M-1, and blaTEM at frequencies of 10/11 (90.90%), 11/11 (100%), 9/11 (81.81%), 6/11 (54.54%), and 10/11 (90.90%), respectively. Moreover, the frequencies of erm(A), erm(B), erm(C), erm(F), erm(G), and erm(Q) were 7/11 (63.63%), 4/11 (36.36%), 4/11 (36.36%), 5/11 (45.45%), 10/11 (90.90%), and 10/11 (90.90%), respectively. Our results demonstrated the high antimicrobial resistance of the investigated isolates and confirmed the existence of multiple mechanisms underlying multidrug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tomazi T, de Souza Filho A F, Heinemann MB, Santos MV (2018) Molecular characterization and antimicrobial susceptibility pattern of Streptococcus agalactiae isolated from clinical mastitis in dairy cattle. PLoS ONE 13:e0199561. https://doi.org/10.1371/journal

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vlkova H, Babak V, Vrtkova I, Cervinkova D, Marosevic D, Moravkova M, Jaglic Z (2017) Epidemiology of intramammary infections with Staphylococcus aureus and mastitis streptococci in a dairy cattle herd with a history of recurrent clinical mastitis. Pol J Vet Sci 20:133–139. https://doi.org/10.1515/pjvs-2017-0017

    Article  CAS  PubMed  Google Scholar 

  3. Gwida MM, EL-Gohary FA (2013) Zoonotic bacterial pathogens isolated from raw milk with special reference to Escherichia coli and Staphylococcus aureus in Dakahlia Governorate, Egypt. Open Access Sci Rep 2:705–709. https://doi.org/10.4172/scientificreports705

    Article  Google Scholar 

  4. El-Gedawy AA, Ahmed HA, Awadallah MAI (2014) Occurrence and molecular characterization of some zoonotic bacteria in bovine milk, milking equipments and humans in dairy farms, Sharkia, Egypt. Int Food Res J 21(5):1813–1823

    CAS  Google Scholar 

  5. Preethirani PL, Isloor S, Sundareshan S, Nuthanalakshmi V, Deepthikiran K, Sinha AY, Rathnamma D, Nithin Prabhu K, Sharada R, Mukkur TK, Hegde NR (2015) Isolation, biochemical and molecular identification, and in vitro antimicrobial resistance patterns of bacteria isolated from Bubaline subclinical mastitis in South India. PLoS ONE 10:e0142717. https://doi.org/10.1371/journal.pone.0142717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Food and Agricultural Organization (2014) Impact of mastitis in small scale dairy production systems. Animal Production and Health Working Paper. No. 13. http://www.fao.org/3/a-i3377e.pdf

  7. Elsayed MS, El-Bagoury AM, Dawoud MA (2015) Phenotypic and genotypic detection of virulence factors of Staphylococcus aureus isolated from clinical and subclinical mastitis in cattle and water buffaloes from different farms of Sadat city in Egypt. Vet World 8:1051–1058. https://doi.org/10.14202/vetworld.2015.1051-1058

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ekin IH, Gurturk K, Ilhan Z, Arabaci C, Gulaydin O (2015) Detection of enzyme activities and their relation to serotypes of bovine and human group B streptococci. J Med Microbiol 64:985–989. https://doi.org/10.1099/jmm.0.000124

    Article  CAS  PubMed  Google Scholar 

  9. Fabres-Klein MH, Santos MJC, Klein RC, Souza GN, Ribon AOB (2015) An association between milk and slimee increases biofilm production by bovine Staphylococcus aureus. BMC Vet Res 11:3. https://doi.org/10.1186/s12917-015-0319-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wright GD (2016) Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol 24:862–871. https://doi.org/10.1016/j.tim.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  11. Hiramatsu K, Katayama Y, Matsuo M, Sasaki T, Morimoto Y, Sekiguchi A, Baba T (2014) Multi-drug-resistant Staphylococcus aureus and future chemotherapy. J Infect Chemother 20:593–601. https://doi.org/10.1016/j.jiac.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  12. Costa SS, Viveiros M, Amaral L, Couto I (2013) Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J 7:59–71. https://doi.org/10.2174/1874285801307010059

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267. https://doi.org/10.1016/j.bbrc.2014.05.090

    Article  CAS  PubMed  Google Scholar 

  14. Kern WV, Steinke P, Schumacher A, Schuster S, von Baum H, Bohnert JA (2006) Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J Antimicrob Chemother 57:339–343. https://doi.org/10.1093/jac/dki445

    Article  CAS  PubMed  Google Scholar 

  15. Viveiros M, Martins A, Paixao L, Rodrigues L, Martins M, Couto I, Fahnrich E, Kern WV, Amaral L (2008) Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int J Antimicrob Agents 31:458–462. https://doi.org/10.1016/j.ijantimicag.2007.12.015

    Article  CAS  PubMed  Google Scholar 

  16. Martins M, Viveiros M, Couto I, Costa SS, Pacheco T, Fanning S, Pages J, Amaral L (2011) Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method. In Vivo 25:171–178

    CAS  PubMed  Google Scholar 

  17. Ba X, Harrison EM, Edwards GF, Holden MTG, Rhod Larsen A, Petersen A, Skov RL, Peacock SJ, Parkhill J, Paterson GK, Holmes MA (2014) Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. J Antimicrob Chemother 69:594–597. https://doi.org/10.1093/jac/dkt418

    Article  CAS  PubMed  Google Scholar 

  18. Sarti M, Campanile F, Sabia C, Santagati M, Gargiulo R, Stefani S (2012) Polyclonal diffusion of beta-lactamase-producing Enterococcus faecium. J Clin Microbiol 50:169–172. https://doi.org/10.1128/JCM.05640-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raphael E, Wong LK, Riley LW (2011) Extended-spectrum beta-lactamase gene sequences in Gram-negative saprophytes on retail organic and nonorganic spinach. Appl Environ Microbiol 77:1601–1607. https://doi.org/10.1128/AEM.02506-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng Y, Qi W, Xu-rong W, Ling W, Xin-pu L, Jin-yin L, Shi-dong Z, Hong-sheng L (2016) Genetic characterization of antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis cases in northwest China. J Integr Agr 15:60345–60347. https://doi.org/10.1016/S2095-3119(16)61368-0

    Article  CAS  Google Scholar 

  21. Skov R, Larsen AR, Kearns A, Holmes M, Teale C, Edwards G, Hill R (2014) Phenotypic detection of mecC-MRSA: cefoxitin is more reliable than oxacillin. J Antimicrob Chemother 69:133–135. https://doi.org/10.1093/jac/dkt341

    Article  CAS  PubMed  Google Scholar 

  22. Cheng D, Zhu SY, Yin Z, Ding W, Mu Z, Su Z, Sun H (2010) Prevalence of bacterial infection responsible for bovine mastitis. Afr J Microbiol Res 4:1110–1116

    Google Scholar 

  23. Odierno L, Calvinho L, Traverssa P, Lasagno M, Bogni C, Reinoso E (2006) Conventional identification of Streptococcus uberis isolated from bovine mastitis in Argentinean dairy herds. J Dairy Sci 89:3886–3890

    Article  CAS  Google Scholar 

  24. Osman KM, Mustafa AM, Aly MA, AbdElhamed GS (2012) Serotypes, virulence genes, and intimin types of Shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli isolated from mastitic milk relevant to human health in Egypt. Vector Borne Zoonotic Dis 12:297–305. https://doi.org/10.1089/vbz.2010.0257

    Article  PubMed  Google Scholar 

  25. Krishnaveni N, Isloor SK, Hegde R, Suryanarayanan VVS, Rathnma D, Veerrgowda BM, Nagaraja CS, Sunareshan S (2014) Rapid detection of virulence associated genes in Streptococcus isolates from bovine mastitis. Afr J Microbiol Res 8:2245–2254. https://doi.org/10.5897/AJMR2013.5894

    Article  CAS  Google Scholar 

  26. Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS (2003) Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 92:179–185. https://doi.org/10.1016/S0378-1135(02)00360-7

    Article  CAS  PubMed  Google Scholar 

  27. Cafiso V, Bertuccio T, Santagati M, Demelio V, Spina D, Nicoletti G, Stefani S (2007) agr-Genotyping and transcriptional analysis of bio¢lm-producing Staphylococcus aureus. FEMS Immunol Med Microbiol 51:220–227. https://doi.org/10.1111/j.1574-695X.2007.00298.x

    Article  CAS  Google Scholar 

  28. Clinical and Laboratory Standards Institute (CLSI) (2015) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 3rd ed. CLSI supplement VET01S (ISBN 1-56238-907-6 [Print]; ISBN 1-56238-908-4 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA, 2015

  29. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  Google Scholar 

  30. Elsayed MSAE, Awad A, Trabees R, Marzouk A (2018) Virulence repertoire and antimicrobial resistance profile of shiga toxin-producing E. coli isolated from sheep and goat farms from Al-Buhayra Egypt. Pak Vet J 38:429–433. https://doi.org/10.29261/pakvetj/2018.082

    Article  CAS  Google Scholar 

  31. Paixão L, Rodrigues L, Couto I, Martins M, Fernandes P, de Carvalho C, Monteiro GA, Sansonetty F, Viveiros LAM (2009) Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J Biol Eng 3:18. https://doi.org/10.1186/1754-1611-3-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martins M, Couto I, Viveiros M, Amaral L (2010) Identification of efflux-mediated multi-drug resistance in bacterial clinical isolates by two simple methods. Methods Mol Biol 642:143–157. https://doi.org/10.1007/978-1-60327-279-7_11

    Article  CAS  PubMed  Google Scholar 

  33. Ke D, Picard FJ, Martineau F, Ménard C, Roy PH, Ouellette M, Bergeron MG (1999) Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 37:3497–3503

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Frey Y, Rodriguez JP, Thomann A, Schwendener S, Perreten V (2013) Genetic characterization of antimicrobial resistance in coagulase-negative Staphylococci from bovine mastitis milk. J Dairy Sci 96:2247–2257. https://doi.org/10.3168/jds.2012-6091

    Article  CAS  PubMed  Google Scholar 

  35. Koike S, Aminov RI, Yannarell AC, Gans HD, Krapac IG, Chee-Sanford JC, Mackie RI (2010) Molecular ecology of macrolide–lincosamide–streptogramin B methylases in waste lagoons and subsurface waters associated with swine production. Microb Ecol 59:487–498. https://doi.org/10.1007/s00248-009-9610-0

    Article  CAS  Google Scholar 

  36. Haque ME, Islam MA, Akter S, Saha S (2014) Identification, molecular detection and antibiogram profile of bacteria isolated from california mastitis test positive milk samples of crossbred cows of Satkhira District in Bangladesh. GSTF Int J Vet Sci 1:59–63. https://doi.org/10.5176/00000003_1.1.8

    Article  Google Scholar 

  37. Kateete DP, Kabugo U, Baluku H, Nyakarahuka L, Kyobe S, Okee M, Najjuka CF, Joloba ML (2013) Prevalence and antimicrobial susceptibility patterns of bacteria from milkmen and cows with clinical mastitis in and around Kampala, Uganda. PLoS ONE 8:e63413. https://doi.org/10.1371/journal.pone.0063413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagasawa Y, Kiku Y, Sugawara K, Yabusaki T, Oono K, Fujii K, Suzuki T, Maehana K, Hayashi T (2019) The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis. J Vet Med Sci 81:107–112. https://doi.org/10.1292/jvms.18-0581

    Article  CAS  PubMed  Google Scholar 

  39. Shittu A, Lin J, Morrison D (2007) Molecular identification and characterization of mannitol-negative methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 57:93–95. https://doi.org/10.1016/j.diagmicrobio.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  40. McAdow M, Missiakas DM, Schneewind O (2012) Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun 4:141–148. https://doi.org/10.1159/000333447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhardwaj S, Angayarkanni J (2015) Streptokinase production from Streptococcus dysgalactiae subsp. equisimilis SK-6 in the presence of surfactants, growth factors and trace elements. 3 Biotech 5:187–193. https://doi.org/10.1007/s13205-014-0209-x

    Article  PubMed  Google Scholar 

  42. Mahmoud AA, Khadr AM, Elshemy TM, Hamoda HA, Ismail MI (2015) Some studies on E. coli mastitis in cattle and buffaloes. Alexandria J Vet Sci 45:105–112. https://doi.org/10.5455/ajvs.178113

    Article  Google Scholar 

  43. Radwan ME, Abo-Zaid KF (2017) Molecular studies on E. coli isolate from milk of mastatic cattle with special reference to associated biochemical changes in kaliobea governorate. Amer J Infect Dis Microbiol 5:115–119. https://doi.org/10.12691/ajidm-5-3-4

    Article  CAS  Google Scholar 

  44. Ogura Y, Gotoh Y, Itoh T, Sato MP, Seto K, Yoshino S, Isobe J, Etoh Y, Kurogi M, Kimata K, Maeda E, Pierard D, Kusumoto M, Akiba M, Tominaga K, Kirino Y, Kato Y, Shirahige K, Ooka T, Ishijima N, Lee K, Iyoda S, Mainil JG, Hayashi T (2017) Population structure of Escherichia coli O26:H11 with recent and repeated stx2 acquisition in multiple lineages. Microb Genom 3:1–12. https://doi.org/10.1099/mgen.0.000141

    Article  Google Scholar 

  45. Chen C, Liu M, Lin C, Lin S, Shi Z (2017) The association of molecular typing, vancomycin MIC, and clinical outcome for patients with methicillin-resistant Staphylococcus aureus infections. J Microbiol Immunol Infect 50:619e626. https://doi.org/10.1016/j.jmii.2015.08.015

    Article  CAS  Google Scholar 

  46. Sharma L, Verma AK, Kumar A, Rahat A, Nigam N, Nigam R (2015) Incidence and pattern of antibiotic resistance of Staphylococcus aureus isolated from clinical and subclinical mastitis in cattle and buffaloes. Asian J Anim Sci 9:100–109. https://doi.org/10.3923/ajas.2015.100.109

    Article  CAS  Google Scholar 

  47. Wang D, Wang Z, Yan Z, Wu J, Ali T, Li J, Lv Y, Han B (2015) Bovine mastitis Staphylococcus aureus: antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infect Genet Evol 31:9–16. https://doi.org/10.1016/j.meegid.2014.12.039

    Article  CAS  PubMed  Google Scholar 

  48. Kumburu HH, Sonda T, Mmbaga BT, Alifrangis M, Lund O, Kibiki G, Aarestrup FM (2017) Patterns of infections, aetiological agents and antimicrobial resistance at a tertiary care hospital in northern Tanzania. Trop Med Int Health 22:454–464. https://doi.org/10.1111/tmi.12836

    Article  CAS  PubMed  Google Scholar 

  49. Gitau GK, Bundi RM, Vanleeuwen J, Mulei CM (2014) Mastitogenic bacteria isolated from dairy cows in Kenya and their antimicrobial sensitivity. J S Afr Vet Assoc 85:950. https://doi.org/10.4102/jsava.v85i1.950

    Article  PubMed  Google Scholar 

  50. Cameron M, Saab M, Heider L, McClure JT, Rodriguez-Lecompte JC, Sanchez J (2016) Antimicrobial susceptibility patterns of environmental Streptococci recovered from bovine milk samples in the Maritime provinces of Canada. Front Vet Sci 3:79. https://doi.org/10.3389/fvets.2016.00079

    Article  PubMed  PubMed Central  Google Scholar 

  51. Verma H, Rawat S, Sharma N, Jaiswal V, Singh R (2018) Prevalence, bacterial etiology and antibiotic susceptibility pattern of bovine mastitis in Meerut. J Entomol Zool Stud 6:706–709

    Google Scholar 

  52. Kia G, Mehdi G, Keyvan R (2014) Prevalence and antibiotic susceptibility of Streptococcus spp. in cows with mastitis in Germi, Iran. Anim Vet Sci 2:31–35. https://doi.org/10.11648/j.avs.20140202.13

    Article  Google Scholar 

  53. Moges N, Asfaw Y, Belihu K, Tadesse A (2011) Antimicrobial susceptibility of mastitis pathogens from small holder dairy herds in and around Gondar, Ethiopia. J Anim Vet Adv 10:1616–1622. https://doi.org/10.3923/javaa.2011.1616.1622

    Article  Google Scholar 

  54. Rüegsegger F, Ruf J, Tschuor A, Sigrist Y, Rosskopf M, Hassig M (2014) Antimicrobial susceptibility of mastitis pathogens of dairy cows in Switzerland. Schweizer Archiv für Tierheilkunde 156:483–488. https://doi.org/10.1024/0036-7281/a000635

    Article  PubMed  Google Scholar 

  55. Bok E, Mazurek J, Stosik M, Wojciech M, Baldy-Chudzik K (2015) Prevalence of virulence determinants and antimicrobial resistance among commensal Escherichia coli derived from dairy and beef cattle. Int J Environ Res Public Health 12:970–985. https://doi.org/10.3390/ijerph120100970

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jang S (2016) Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. J Microbiol 54:1–8. https://doi.org/10.1007/s12275-016-5159-z

    Article  CAS  PubMed  Google Scholar 

  57. Ding Y, Zhao J, He X, Li M, Guan H, Zhang Z, Li P (2016) Antimicrobial resistance and virulence-related genes of Streptococcus obtained from dairy cows with mastitis in Inner Mongolia, China. Pharm Biol 54:162–167. https://doi.org/10.3109/13880209.2015.1025290

    Article  CAS  PubMed  Google Scholar 

  58. Mainda G, Bessell PB, Muma JB, McAteer SP, Chase-Topping ME, Gibbons J, Stevens MP, Gally DL, Bronsvoort BM (2015) Prevalence and patterns of antimicrobial resistance among Escherichia coli isolated from Zambian dairy cattle across different production systems. Sci Rep 5:12439. https://doi.org/10.1038/srep12439

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938. https://doi.org/10.1016/j.febslet.2007.01.073

    Article  CAS  PubMed  Google Scholar 

  60. Reynolds E, Ross JI, Cove JH (2003) Msr(A) and related macrolide/streptogramin resistance determinants: incomplete transporters? Int J Antimicrob Agents 22:228–236. https://doi.org/10.1016/S0924-8579(03)00218-8

    Article  CAS  PubMed  Google Scholar 

  61. Varaldo PE, Montanari MP, Giovanetti E (2009) Genetic elements responsible for erythromycin resistance in Streptococci. Antimicrob Agents Chemother 53:343–353. https://doi.org/10.1128/AAC.00781-08

    Article  CAS  PubMed  Google Scholar 

  62. Bonnin RA, Nordmann P, Carattoli A, Poirel L (2012) Comparative genomics of IncL/M-type plasmids: evolution by acquisition of resistance genes and insertion sequences. Antimicrob Agents Chemother 57:674–676. https://doi.org/10.1128/AAC.01086-12

    Article  CAS  PubMed  Google Scholar 

  63. Li B, Wendlandt S, Yao J, Liu Y, Zhang Q, Shi Z, Wei J, Shao D, Schwarz S, Wang S, Ma Z (2013) Detection and new genetic environment of the pleuromutilin-lincosamide-streptogramin A resistance gene lsa (E) in methicillin-resistant Staphylococcus aureus of swine origin. Antimicrob Agents Chemother 68:1251–1255. https://doi.org/10.1093/jac/dkt015

    Article  CAS  Google Scholar 

  64. Chouchani C, El Salabi A, Marrakchi R, Ferchichi L, Walsh TR (2012) First report of mefA and msrA/msrB multidrug efflux pumps associated with blaTEM-1 b-lactamase in Enterococcus faecalis. Int J Infect Dis 16:e104–e109. https://doi.org/10.1016/j.ijid.2011.09.024

    Article  CAS  PubMed  Google Scholar 

  65. Horiyama T, Nishino K (2014) AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin exportin Escherichia coli. PLoS ONE 9:e108642. https://doi.org/10.1371/journal.pone.0108642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Viveiros M, Martins M, Rodrigues L, Machado D, Couto I, Ainsa J, Amral L (2012) Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs. Expert Rev Anti Infect Ther 10:983–998. https://doi.org/10.1586/eri.12.89

    Article  CAS  PubMed  Google Scholar 

  67. Ban TA (2007) Fifty years chlorpromazine: a historical perspective. Neuropsychiatr Dis Treat 3:495–500

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kong R, Kang O, Seo Y, Mun S, Zhou T, Shin D, Kwon D (2016) The inhibition effect of Chlorpromazine against the b-lactam resistance of MRSA. Asian Pac J Trop Med 9:542–546. https://doi.org/10.1016/j.apjtm.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  69. Chan YY, Ong YM, Chua KL (2007) Synergistic interaction between Burkholderia pseudomallei. Antimicrob Agents Chemother 51:623–630. https://doi.org/10.1128/AAC.01033-06

    Article  CAS  PubMed  Google Scholar 

  70. Spengler G, Kincses A, Gajdács M, Amaral L (2017) New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules 22:E468. https://doi.org/10.3390/molecules22030468

    Article  CAS  PubMed  Google Scholar 

  71. García-Álvarez M, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA (2011) Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595–603. https://doi.org/10.1016/S1473-3099(11)70126-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmitz F, Sadurski R, Kray A, Boos M, Geisel R, Köhrer K, Verhoef J, Fluit AC (2000) Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. J Antimicrob Chemother 45:891–898

    Article  CAS  Google Scholar 

  73. Fasihi Y, Saffari F, Ghahraman MR, Kalantar-Neyestanaki D (2017) Molecular detection of macrolide and lincosamide-resistance genes in clinical methicillin-resistant Staphylococcus aureus isolates from Kerman, Iran. Arch Pediatr Infect Dis 5:e37761. https://doi.org/10.5812/pedinfect.37761

    Article  Google Scholar 

  74. Roberts MC (2008) Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159. https://doi.org/10.1111/j.1574-6968.2008.01145.x

    Article  CAS  PubMed  Google Scholar 

  75. Zhang S, Piepers S, Shan R, Cai L, Mao S, Zou J, Ali T, De Vliegher S, Han B (2017) Phenotypic and genotypic characterization of antimicrobial resistance profiles in Streptococcus dysgalactiae isolated from bovine clinical mastitis in 5 provinces of China. J Dairy Sci 101:3344–3355

    Article  Google Scholar 

  76. Chung WO, Werckenthin C, Schwarz S, Roberts MC (1999) Host range of the ermF rRNA methylase gene in bacteria of human and animal origin. J Antimicrob Chemother 43:5–14

    Article  CAS  Google Scholar 

  77. Chirila F, Tabaran A, Fit N, Nadas G, Mihaiu M, Tabaran F, Cătoi C, Reget OL, Dan SD (2016) Concerning increase in antimicrobial resistance in Shiga toxin-producing Escherichia coli isolated from young animals during 1980–2016. Microbes Environ 32:252–259. https://doi.org/10.1264/jsme2.ME17023

    Article  Google Scholar 

  78. Das A, Guha C, Biswas U, Jana PS, Chatterjee A, Samanta I (2017) Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal. Vet World 10:517–520. https://doi.org/10.14202/vetworld.2017.517-520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dahmen S, Métayer V, Gay E, Madec JY, Haenni M (2013) Characterization of extended spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet Microbiol 162:793–799. https://doi.org/10.1016/j.vetmic.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  80. Nguyen MC, Woerther P, Bouvet M, Andremont A, Leclercq R, Canu A (2009) Escherichia coli as reservoir for macrolide resistance genes. Emerg Infect Dis 15:1648–1650. https://doi.org/10.3201/eid1510.090696

    Article  CAS  PubMed Central  Google Scholar 

  81. Levin TP, Suh B, Axelrod P, Truant AL, Fekete T (2005) Potential clindamycin resistance in clindamycin-susceptible, erythromycin-resistant Staphylococcus aureus: report of a clinical failure. Antimicrob Agents Chemother 49:1222–1224. https://doi.org/10.1128/AAC.49.3.1222-1224.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the veterinary administration at Menoufia, farmers, and farm owners for helping in sample collection.

Funding

The authors declare that there was no funding source.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: (MSE, TMR, AS, RT, GA, DE), Data curation: (MSE, TMR, AS, DE), Formal analysis: (MSE, TMR, AS), Investigation: (MSE, TMR, AS, RT, GA), Methodology: (MSE, TMR, AS, DE), Project administration: (MSE), Supervision: (MSE), Writing the original draft: (MSE), Review & editing: (MSE, TMR, AS). All authors have read and approved the manuscript.

Corresponding author

Correspondence to Mohamed Sabry Abd Elraheam Elsayed.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Ethical approval

The protocol was approved by the institutional animal care and use committee (IACUC) at the Faculty of Veterinary Medicine, University of Sadat City. Furthermore, our manuscript reporting adheres to the ARRIVE guidelines. The authors obtained written informed consent to use the animals in their study from the owner(s) of the animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayed, M.S.A.E., Roshdey, T., Salah, A. et al. Phenotypic and genotypic methods for identification of slime layer production, efflux pump activity, and antimicrobial resistance genes as potential causes of the antimicrobial resistance of some mastitis pathogens from farms in Menoufia, Egypt. Mol Biol Rep 46, 6533–6546 (2019). https://doi.org/10.1007/s11033-019-05099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05099-6

Keywords

Navigation