Skip to main content

Advertisement

Log in

Polymorphisms in XPC gene and risk for prostate cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Single nucleotide polymorphisms (SNP) in repair gene DNA such as XPC gene can reduce the DNA repair capacity (DRC). Reduced DRC induce genetic instability and may increase the susceptibility to prostate cancer (PC). We conducted a case-controls study to examine the relationship between XPC Lys939Gln and XPC-PAT polymorphisms and the risk for prostate cancer in Tunisian population. We have also correlated molecular results with clinical parameters (Gleason score and TNM status) and lifestyle factors (tobacco status, alcohol consumption, and exposition to professional risk factors) of prostate cancer patients. We have found that the XPC Lys939Gln polymorphism was not associated with a risk of prostate cancer. However the XPC PAT I/I genotype was found to be associated with 3.83-fold increased risk of prostate cancer compared to controls (p = 0.00006; OR 3.83; 95% CI (1.83–8.05)). The test of linkage disequilibrium showed that XPC-PAT polymorphism is in linkage disequilibrium with XPC Lys939Gln variants. The combined analysis of XPC Lys939Gln and XPC-PAT variants showed that patients who inherited (Lys/Gln + PAT D/D) genotypes were protected against prostate cancer development compared to controls. In the other hand, no significant association has been found between XPC polymorphisms and clinical parameters or between XPC polymorphisms and lifestyle factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

SNP:

Single nucleotide polymorphisms

DRC:

DNA repair capacity

PC:

Prostate cancer

PSA:

Prostate-specific antigen

NER:

Nucleotide excision repair

BER:

Base excision repair

MMR:

Mismatch repair

DSBR:

Double-strand break repair

TCR:

Transcription-coupled repair

XPC:

Xeroderma pigmentosum complementary group C

DRE:

Digital rectal examination

EDTA:

Ethylene diamine tetra-acetic acid

PCR:

Polymerase chain reaction

PCR-RFLP:

Restriction Fragment Length polymorphism

ORs:

Odds ratios

CI:

Confidence intervals

References

  1. Bello AP, Masip TC (2014) Prostate cancer epidemiology. Arch Esp de Urol 67(5):373–382

    Google Scholar 

  2. Curado MP, Shin HR, Storm H, Heanue M, Boyle P (2007) Cancer incidence in five continents IARC scientific publications

  3. Forrest MS, Edwards SM, Houlston R, Kote-Jarai Z, Key T, Allen N, Knowles MA, Turner F, Ardern-Jones A, Murkin A, Williams S, Oram R, collaborators C-UBUpcs, Bishop DT, Eeles RA (2005) Association between hormonal genetic polymorphisms and early-onset prostate cancer. Prostate Cancer Prostat Dis 8:95. https://doi.org/10.1038/sj.pcan.4500785

    Article  CAS  Google Scholar 

  4. Gong Z, Agalliu I, Lin DW, Stanford JL, Kristal AR (2008) Cigarette smoking and prostate cancer-specific mortality following diagnosis in middle-aged men. Cancer Causes Control: CCC 19(1):25–31. https://doi.org/10.1007/s10552-007-9066-9

    Article  PubMed  Google Scholar 

  5. Gong Z, Kristal AR, Schenk JM, Tangen CM, Goodman PJ, Thompson IM (2009) Alcohol consumption, finasteride, and prostate cancer risk: results from the prostate cancer prevention trial. Cancer 115(16):3661–3669. https://doi.org/10.1002/cncr.24423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rozet F, Hennequin C, Beauval JB, Beuzeboc P, Cormier L, Fromont G, Mongiat-Artus P, Ouzzane A, Ploussard G, Azria D, Brenot-Rossi I, Cancel-Tassin G, Cussenot O, Lebret T, Rebillard X, Soulié M, Renard-Penna R, Méjean A (2016) Recommandations en onco-urologie 2016–2018 du CCAFU: cancer de la prostate. Progrès en Urol 27:S95–S143. https://doi.org/10.1016/s1166-7087(16)30705-9

    Article  Google Scholar 

  7. He J, Shi TY, Zhu ML, Wang MY, Li QX, Wei QY (2013) Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: a meta-analysis. Int J Cancer 133(8):1765–1775. https://doi.org/10.1002/ijc.28089

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Wang H, Lin T, Wei Q, Zhi Y, Yuan F, Song B, Yang J, Chen Z (2012) Interactions between cigarette smoking and XPC-PAT genetic polymorphism enhance bladder cancer risk. Oncol Rep 28(1):337–345. https://doi.org/10.3892/or.2012.1759

    Article  CAS  PubMed  Google Scholar 

  9. Brown KL, Roginskaya M, Zou Y, Altamirano A, Basu AK, Stone MP (2010) Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R,6S) thymine glycol epimer in the 5′-GTgG-3′ sequence: destabilization of two base pairs at the lesion site. Nucleic Acids Res 38(2):428–440. https://doi.org/10.1093/nar/gkp844

    Article  CAS  PubMed  Google Scholar 

  10. Jiang X, Zhou L-t, Zhang S-c, Chen K (2012) XPC polymorphism increases risk of digestive system cancers: current evidence from A meta-analysis. Chin J Cancer Res 24(3):181–189. https://doi.org/10.1007/s11670-012-0181-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu Y, Yang H, Chen Q, Lin J, Grossman HB, Dinney CP, Wu X, Gu J (2008) Modulation of DNA damage/DNA repair capacity by XPC polymorphisms. DNA Repair 7(2):141–148. https://doi.org/10.1016/j.dnarep.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  12. Marin MS, Lopez-Cima MF, Garcia-Castro L, Pascual T, Marron MG, Tardon A (2004) Poly (AT) polymorphism in intron 11 of the XPC DNA repair gene enhances the risk of lung cancer. Cancer Epidemiol, Biomark Prev 13 (11 Pt 1):1788–1793

    CAS  Google Scholar 

  13. Qiao Y, Spitz MR, Shen H, Guo Z, Shete S, Hedayati M, Grossman L, Mohrenweiser H, Wei Q (2002) Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis 23(2):295–299

    Article  CAS  PubMed  Google Scholar 

  14. Sak SC, Barrett JH, Paul AB, Bishop DT, Kiltie AE (2005) The polyAT, intronic IVS11-6 and Lys939Gln XPC polymorphisms are not associated with transitional cell carcinoma of the bladder. Br J Cancer 92(12):2262–2265. https://doi.org/10.1038/sj.bjc.6602616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang L, Zhang Z, Yan W (2005) Single nucleotide polymorphisms for DNA repair genes in breast cancer patients. Clin Chim Acta 359(1–2):150–155. https://doi.org/10.1016/j.cccn.2005.03.047

    Article  CAS  PubMed  Google Scholar 

  16. Hirata H, Hinoda Y, Tanaka Y, Okayama N, Suehiro Y, Kawamoto K, Kikuno N, Majid S, Vejdani K, Dahiya R (2007) Polymorphisms of DNA repair genes are risk factors for prostate cancer. Eur J Cancer (Oxford, England 1990) 43(2):231–237. https://doi.org/10.1016/j.ejca.2006.11.005

    Article  CAS  Google Scholar 

  17. Wu H, Lv Z, Wang X, Zhang L, Mo N (2015) Lack of association between XPC Lys939Gln polymorphism and prostate cancer risk: an updated meta-analysis based on 3039 cases and 3253 controls. Int J Clin Exp Med 8(10):17959–17967

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mirecka A, Paszkowska-Szczur K, Scott RJ, Gorski B, van de Wetering T, Wokolorczyk D, Gromowski T, Serrano-Fernandez P, Cybulski C, Kashyap A, Gupta S, Golab A, Slojewski M, Sikorski A, Lubinski J, Debniak T (2014) Common variants of xeroderma pigmentosum genes and prostate cancer risk. Gene 546(2):156–161. https://doi.org/10.1016/j.gene.2014.06.026

    Article  CAS  PubMed  Google Scholar 

  19. Zou Y-F, Tao J-H, Ye Q-L, Pan H-F, Pan F-M, Su H, Ye D-Q (2013) Association of XPC gene polymorphisms with susceptibility to prostate cancer: evidence from 3936 subjects. Genet Test Mol Biomark 17(12):926–931. https://doi.org/10.1089/gtmb.2013.0267

    Article  CAS  Google Scholar 

  20. Evans GA (1990) Molecular cloning: a laboratory manual. 2nd edn. Volumes 1, 2, and 3. Current protocols in molecular biology. Cell 61 (1):17–18. https://doi.org/10.1016/0092-8674(90)90210-6

    Article  Google Scholar 

  21. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    Article  CAS  Google Scholar 

  22. Agalliu I, Kwon EM, Salinas CA, Koopmeiners JS, Ostrander EA, Stanford JL (2010) Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control 21(2):289–300. https://doi.org/10.1007/s10552-009-9461-5

    Article  PubMed  Google Scholar 

  23. Yoshino Y, Takeuchi S, Katoh T, Kuroda Y (2016) XPC intron11 C/A polymorphism as a risk factor for prostate cancer. Environ Health Prev Med 21(2):100–104. https://doi.org/10.1007/s12199-015-0505-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dai QS, Hua RX, Zhang R, Huang YS, Hua ZM, Yun CT, Zeng RF, Long JT (2013) Poly (AT) deletion/insertion polymorphism of the XPC gene contributes to urinary system cancer susceptibility: a meta-analysis. Gene 528(2):335–342. https://doi.org/10.1016/j.gene.2013.06.092

    Article  CAS  PubMed  Google Scholar 

  25. Mandal RK, Gangwar R, Kapoor R, Mittal RD (2012) Polymorphisms in base-excision and nucleotide-excision repair genes and prostate cancer risk in north Indian population. Indian J Med Res 135:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mittal RD, Mandal RK (2012) Genetic variation in nucleotide excision repair pathway genes influence prostate and bladder cancer susceptibility in North Indian population. Indian J Hum Genet 18(1):47–55. https://doi.org/10.4103/0971-6866.96648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu X, Gu J, Grossman HB, Amos CI, Etzel C, Huang M, Zhang Q, Millikan RE, Lerner S, Dinney CP et al (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78(3):464–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu Y, Lai M, Yang H, Lin J, Huang M, Grossman HB, Dinney CP, Wu X (2007) Genotypes, haplotypes and diplotypes of XPC and risk of bladder cancer. Carcinogenesis 28(3):698–703

    Article  CAS  PubMed  Google Scholar 

  29. Kahnamouei SA, Narouie B, Sotoudeh M, Mollakouchekian MJ, Simforoosh N, Ziaee SA, Samzadeh M, Afshari M, Jamaldini SH, Imeni M, Hasanzad M (2016) Association of XPC Gene Polymorphisms with Prostate Cancer Risk. Clin Lab 62(6):1009–1015

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The team work would like to express their thanks and gratitude to the medical team of Urology department, Charles Nicolle Hospital, Tunis—Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slah Ouerhani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This project was approved by a Charles Nicolle ethical committee, Tunis; Tunisia.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, R., Bougatef, K., Setti Boubaker, N. et al. Polymorphisms in XPC gene and risk for prostate cancer. Mol Biol Rep 46, 1117–1125 (2019). https://doi.org/10.1007/s11033-018-4572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4572-2

Keywords

Navigation