Skip to main content

Advertisement

Log in

Comparative transcriptomic analysis to identify differentially expressed genes in fat tissue of adult Berkshire and Jeju Native Pig using RNA-seq

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pork is a major source of animal protein for humans. The subcutaneous, intermuscular and the intramuscular fat are the factors responsible for meat quality. RNA-seq is rapidly adopted for the profiling of the transcriptomes in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds are of particular interest for the current study. RNA-seq was used to investigate the transcriptome profiling in the fat tissue. Sequence reads were obtained from Ilumina HiSeq2000 and mapped to the pig genome using Tophat2. Total 153 DEGs were identified and 71 among the annotated genes, have BLAST matches in the non- redundant database. Metabolic, immune response and protein binding are enriched pathways in the fat tissue. In our study, biological adhesion, cellular, developmental and multicellular organismal processes in fat were up-regulated in JNP as compare to Berkshire. Multicellular organismal process, developmental process, embryonic morphogenesis and skeletal system development were the most significantly enriched terms in fat of JNP and Berkshire breeds (p = 1.17E−04, 0.044, 3.47E−04 and 4.48E−04 respectively). COL10A1, COL11A2, PDK4 and PNPLA3 genes responsible for skeletal system morphogenesis and body growth were down regulated in JNP. This study is the first statistical analysis for the detection of DEGs from RNA-seq data generated from fat tissue sample. This analysis can be used as stepping stone to understand the difference in the genetic mechanisms that might influence the identification of novel transcripts, sequence polymorphisms, isoforms and noncoding RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wood JD (2001) Meat quality and the designer pig. In: Lyons TP, Coles DJA (eds) Concepts of meat science. Nottingham Nutrition International, Nottingham, pp 17–31

    Google Scholar 

  2. Verbeke W, Van Oeckel MJ, Warnants N, Viaene J, Boucque CV (1999) Consumer perceptions, facts and possibilities to improve acceptability of health and sensory characteristics of pork. Meat Sci 53:77–99

    Article  CAS  PubMed  Google Scholar 

  3. Wood J, Richardson R, Nute G, Fisher A, Campo M, Kasapidou E, Sheard P, Enser M (2004) Effects of fatty acids on meat quality: a review. Meat Sci 66:21–32

    Article  CAS  PubMed  Google Scholar 

  4. Cho I, Park H, Yoo C, Lee G, Lim H, Lee J, Jung E, Ko M, Lee J, Jeon J (2011) QTL analysis of white blood cell, platelet and red blood cell-related traits in an F2 intercross between Landrace and Korean native pigs. Anim Genet 42:621–626

    Article  CAS  PubMed  Google Scholar 

  5. Mortazavi A, Williams BA, Mccue K, Schaefferm L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  6. Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    Article  CAS  PubMed  Google Scholar 

  7. Eveland AL, McCarty DR, Koch KE (2008) Transcript profiling by 3-untranslated region sequencing resolves expression of gene families. Plant Physiol 146:32–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  10. Kim T, Kim K, Choi B, Yoon D, Jang G, Lee K, Chung H, Lee H, Park H, Lee J (2005) Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J Anim Sci 83:2255–2263

    CAS  PubMed  Google Scholar 

  11. Kim NK, Lim JH, Song MJ, Kim OH, Park BY, Kim MJ, Hwang IH, Lee CS (2008) Comparisons of Longissimus muscle metabolic enzymes and muscle fiber types in Korean and western pig breeds. Meat Sci 78:455–460

    Article  CAS  PubMed  Google Scholar 

  12. Moon JK, Kim KS, Kim JJ, Choi BH, Cho BW, Kim TH, Lee CK (2009) Differentially expressed transcripts in adipose tissue between korean native pig and yorkshire breeds. Anim Genet 40:115–118

    Article  CAS  PubMed  Google Scholar 

  13. Chen C, Ai H, Ren J, Li W, Li P, Qiao R, Ouyang J, Yang M, Ma J, Huang L (2011) A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end rna sequencing. BMC Genom 12:448

    Article  CAS  Google Scholar 

  14. Petkov SG, Marks H, Klein T, Garcia RS, Gao Y, Stunnenberg H, Hyttel P (2011) In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at days 20–24 of gestation. Stem Cell Res 6:226–237

    Article  CAS  PubMed  Google Scholar 

  15. Rustemeyer S, Lamberson W, Ledoux D, Wells K, Austin K, Cammack K (2011) Effects of dietary aflatoxin on the hepatic expression of apoptosis genes in growing barrows. J Anim Sci 89:916–925

    Article  CAS  PubMed  Google Scholar 

  16. Jung WY, Kwon SG, Son M, Cho ES, Lee Y, Kim JH, Kim BW, Hwang JH, Kim TW, Park HC (2012) RNA-Seq approach for genetic improvement of meat quality in pig and evolutionary insight into the substrate specificity of animal carbonyl reductases. PLoS ONE 7:E42198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Looft C (2013) Transcriptome analysis of testis and liver for androstenone by using RNA sequencing. Plant Anim Genome XXI Conference, San Diego, CA

  18. Prather RS (2013) Pig Genomics for biomedicine. Nat Biotech 31:122–124

    Article  CAS  Google Scholar 

  19. Samborski A, Graf A, Krebs S, Kessler B, Bauersachs S (2013) Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol Reprod 88:84

    Article  PubMed  Google Scholar 

  20. Wilhelm BT, Landry JR (2009) RNA-seq quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257

    Article  CAS  PubMed  Google Scholar 

  21. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26:493–500

    Article  PubMed Central  PubMed  Google Scholar 

  22. Robinson MD, Oshlack A (2010) A Scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hong D, Rhie A, Park SS, Lee J, Ju YS, Kim S, Yu SB, Bleazard T, Park HS, Rhee H (2012) FX: an RNA-seq analysis tool on the cloud. Bioinformatics 28:721–723

    Article  CAS  PubMed  Google Scholar 

  24. Hardcastle TJ, Kelly KA (2010) Bayseq: empirical bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422

    Article  PubMed Central  PubMed  Google Scholar 

  25. Robinson MD, Mccarthy DJ, Smyth GK (2010) Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) Degseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  27. Tarazona S, Alcalde FG, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21:2213–2223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with tophat and cufflinks. Nat Prot 7:562–578

    Article  CAS  Google Scholar 

  29. Friendly M (2002) Corrgrams: exploratory displays for correlation matrices. Am Stat 56:316–324

    Article  Google Scholar 

  30. Bloom JS, Khan Z, Kruglyak L, Singh M, Caudy AA (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genom 10:221

    Article  Google Scholar 

  31. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  32. Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4:R70

    Article  PubMed Central  PubMed  Google Scholar 

  33. Alterovitz G, Ramoni MF (2010) Knowledge based bioinformatics. Wiley Online Library, Hoboken

    Book  Google Scholar 

  34. Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. doi:10.1007/s12064-012-0162-3

    PubMed  Google Scholar 

  35. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ (2010) ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res 38:W96–W102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kouba M, Enser M, Whittington F, Nute G, Wood J (2003) Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig. J Anim Sci 81:1967–1979

    CAS  PubMed  Google Scholar 

  37. Rehfeldt C, Kuhn G (2006) Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis. J Anim Sci 84:E113–E123

    PubMed  Google Scholar 

  38. Kim D, Seong P, Cho S, Kim J, Lee J, Jo C, Lim D (2009) Fatty acid composition and meat quality traits of organically reared Korean native black pigs. Livest Sci 120:96–102

    Article  Google Scholar 

  39. Venkatesh B, Hettwer U, Koopmann B, Karlovsky P (2005) Conversion of cDNA differential display results (DDRT-PCR) into quantitative transcription profiles. BMC Genom 6:51

    Article  Google Scholar 

  40. Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res Part C 75:200–212

    Article  CAS  Google Scholar 

  41. Kim SW, Jung JH, Do KT, Kim KS, Do CH, Kyu Park J, Joo YK, Kim TS, Choi BH, Kim TH (2007) Investigation of single nucleotide polymorphisms in porcine candidate gene for growth and meat quality traits in the Berkshire breed. J Life Sci 17:1622–1626

    Article  Google Scholar 

  42. Lan J, Lei MG, Zhang YB, Wang JH, Feng XT, Xu DQ, Gui JF, Xiong YZ (2009) Characterization of the porcine differentially expressed PDK4 gene and association with meat quality. Mol Biol Rep 36:2003–2010

    Article  CAS  PubMed  Google Scholar 

  43. Chen Z, Gao X, Lei T, Chen X, Zhou L, Yu A, Lei P, Zhang R, Long H, Yang Z (2011) Molecular characterization, expression and chromosomal localization of porcine PNPLA3 and PNPLA4. Biotechnol Lett 33:1327–1337

    Article  CAS  PubMed  Google Scholar 

  44. Majer M, Popov KM, Harris RA, Bogardus C, Prochazka M (1998) Insulin downregulates pyruvate dehydrogenase kinase (PDK) mRNA: potential mechanism contributing to increased lipid oxidation in insulin-resistant subjects. Mol Genet Metab 65:181–186

    Article  CAS  PubMed  Google Scholar 

  45. Boulatnikov I, Popov KM (2003) Formation of functional heterodimers by isozymes 1 and 2 of pyruvate dehydrogenase kinase. Biochim Biophys Acta 1645:183–192

    Article  CAS  PubMed  Google Scholar 

  46. Glenn KL, Ramos AM, Rothschild MF (2007) Analysis of FMO genes and off flavour in pork. J Anim Breed Genet 124:35–38

    Article  CAS  PubMed  Google Scholar 

  47. Zhou J, Shephard EA (2006) Mutation, polymorphism and perspectives for the future of human flavin containing mono- oxygenase 3. Mutat Res 612:165–171

    Article  CAS  PubMed  Google Scholar 

  48. Chamoun Z, Vacca F, Parton RG, Gruenberg J (2013) PNPLA3/adiponutrin functions in lipid droplet formation. Biol Cell 105:219–233

    Article  CAS  PubMed  Google Scholar 

  49. Serao NV, Veroneze R, Ribeiro AM, Verardo LL, Braccini NJ, Gasparino E, Campos CF, Lopes PS, Guimaraes SE (2011) Candidate gene expression and intramuscular fat content in pigs. J Anim Breed Genet 128:28–34

    Article  CAS  PubMed  Google Scholar 

  50. Switonski M, Stachowiak M, Cieslak J, Bartz M, Grzes M (2010) Genetics of fat tissue accumulation in pigs: a comparative approach. J Appl Genet 51:153–168

    Article  CAS  PubMed  Google Scholar 

  51. Akbar H, Schmitt E, Ballou MA, Correa MN, DePeters EJ, Loor JJ (2013) Dietary lipid during late-pregnancy and early-lactation to manipulate metabolic and inflammatory gene network expression in dairy cattle liver with a focus on PPARs. Gene Regul Syst Bio 7:103–123

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Shin DJ, Joshi P, Hong SH, Mosure K, Shin DG, Osborne TF (2012) Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic Acids Res 40:11499–11509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Yuan HX, Xiong Y, Guan KL (2013) Nutrient sensing, metabolism and cell growth control. Mol Cell 49:379–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Pashaj A, Yi X, Xia M, Canny S, Riethoven JJ, Moreau R (2013) Characterization of genome-wide transcriptional changes in liver and adipose tissues of ZDF (fa/fa) rats fed R-α-lipoic acid by next-generation sequencing. Physiol Genomics 45:1136–1143

    Article  PubMed  Google Scholar 

  55. Luo W, Diaz FJ, Wiltbank MC (2011) Induction of mRNA for chemokines and chemokine receptors by prostaglandin F2α- is dependent upon stage of the porcine corpus luteum and intraluteal progesterone. Endocrinology 152:2797–2805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG (2001) B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2:1126–1132

    Article  CAS  PubMed  Google Scholar 

  57. Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 10:179–184

    Article  Google Scholar 

  58. Chen Z, Gerhold-Ay A, Gebhard S, Boehm D, Solbach C, Lebrecht A, Battista M, Sicking I, Cotarelo C, Cadenas C, Marchan R, Stewart JD, Gehrmann M, Koelbl H, Hengstler JG, Schmidt M (2012) Immunoglobulin kappa C predicts overall survival in node-negative breast cancer. PLoS ONE 7:e44741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ho CS, Rochelle ES, Martens GW, Schook LB, Smith DM (2006) Characterization of swine leukocyte antigen polymorphism by sequence-based and PCR-SSP methods in Meishan pigs. Immunogenetics 58:873–882

    Article  CAS  PubMed  Google Scholar 

  60. Akha AAS, Theriot CM, Erb-Downward JR, McDermott AJ, Falkowski NR, Tyra HM, Rutkowski DT, Young VB, Huffnagle GB (2013) Acute infection of mice with Clostridium difficile leads to eIF2a phosphorylation and pro-survival signaling as part of the mucosal inflammatory response. Immunology 140:111–122

    Article  Google Scholar 

  61. Costa D, Lazzarini E, Canciani B, Giuliani A, Spanò R, Marozzi K, Manescu A, Cancedda R, Tavella S (2013) Altered bone development and turnover in transgenic mice over-expressing lipocalin-2 in bone. J Cell Physiol 228:2210–2221

    Article  CAS  PubMed  Google Scholar 

  62. Soto MIN, Jozani RJ, Bridle B, Mallard BA (2008) Analysis of gene expression patterns by microarray hybridization in blood mononuclear cells of SLA-DRB1 defined Canadian Yorkshire pigs. BMC Res Notes 31:1–7

    Google Scholar 

  63. Flannery CR, Hughes CE, Schumacher BL, Tudor D, Aydelotte MB, Kuettner KE, Caterson B (1999) Articular cartilage superficial one protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem Biophys Res Commun 254:535–541

    Article  CAS  PubMed  Google Scholar 

  64. Coates EE, Riggin CN, Fisher JP (2012) Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells. J Orthop Res. doi:10.1002/jor.22166

    PubMed  Google Scholar 

  65. Seo H, Choi Y, Shim J, Choi Y, Ka H (2012) Regulatory mechanism for expression of IL1B receptors in the uterine endometrium and effects of IL1B on prostaglandin synthetic enzymes during the implantation period in pigs. Biol Reprod 87:1–11

    Article  Google Scholar 

  66. Jassar AC, Bernado P, Chidgey M, Overduin M (2013) Hinged plakin domains provide specialized degrees of articulation in envoplakin, periplakin and desmoplakin. PLoS ONE 8:e69767

    Article  Google Scholar 

  67. Sousounis K, Looso M, Maki N, Ivester CJ, Braun T, Tsonis PA (2013) Transcriptome analysis of newt lens regeneration reveals distinct gradients in gene expression patterns. PLoS ONE 8:e61445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Zhou QY, Fang MD, Huang TH, Li CC, Yu M, Zhao SH (2009) Detection of differentially expressed genes between Erhualian and Large White placentas on day 75 and 90 of gestation. BMC Genom. doi:10.1186/1471-2164-10-337

    Google Scholar 

  69. Bekhit AEA, Hopkins DL, Fahri FT, Ponnampalam EN (2013) Oxidative processes in muscle systems and fresh meat: sources, markers, and remedies. Compr Rev Food Sci F. doi:10.1111/1541-4337.12027

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ009032022012), Rural Development Administration, Republic of Korea, hence the authors are thankful to this organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Kee Jeong.

Additional information

Simrinder Singh Sodhi and Won Cheoul Park have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodhi, S.S., Park, W.C., Ghosh, M. et al. Comparative transcriptomic analysis to identify differentially expressed genes in fat tissue of adult Berkshire and Jeju Native Pig using RNA-seq. Mol Biol Rep 41, 6305–6315 (2014). https://doi.org/10.1007/s11033-014-3513-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3513-y

Keywords

Navigation