Skip to main content
Log in

Hexokinase cellular trafficking in ischemia–reperfusion and ischemic preconditioning is altered in type I diabetic heart

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) has been reported to alter the cardiac response to ischemia–reperfusion (IR). In addition, cardioprotection induced by ischemic preconditioning (IPC) is often impaired in diabetes. We have previously shown that the subcellular localisation of the glycolytic enzyme hexokinase (HK) is causally related to IR injury and IPC protective potential. Especially the binding of HK to mitochondria and prevention of HK solubilisation (HK detachment from mitochondria) during ischemia confers cardioprotection. It is unknown whether diabetes affects HK localisation during IR and IPC as compared to non-diabetes. In this study we hypothesize that DM alters cellular trafficking of hexokinase in response to IR and IPC, possibly explaining the altered response to IR and IPC in diabetic heart. Control (CON) and type I diabetic (DM) rat hearts (65 mg/kg streptozotocin, 4 weeks) were isolated and perfused in Langendorff-mode and subjected to 35 min I and 30 min R with or without IPC (3 times 5 min I). Cytosolic and mitochondrial fractions were obtained at (1) baseline, i.e. after IPC but before I, (2) 35 min I, (3) 5 min R and (4) 30 min R. DM improved rate-pressure product recovery (RPP; 71 ± 10 % baseline (DM) versus 9 ± 1 % baseline (CON) and decreased contracture (end-diastolic pressure: 24 ± 8 mmHg (DM) vs 77 ± 4 mmHg (CON)) after IR as compared to control, and was associated with prevention of HK solubilisation at 35 min I. IPC improved cardiac function in CON but not in DM hearts. IPC in CON prevented HK solubilisation at 35 min I and at 5 min R, with a trend for increased mitochondrial HK. In contrast, the non-effective IPC in DM was associated with solubilisation of HK and decreased mitochondrial HK at early reperfusion and a reciprocal behaviour at late reperfusion. We conclude that type I DM significantly altered cellular HK translocation patterns in the heart in response to IR and IPC, possibly explaining altered response to IR and IPC in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edge sword? J Clin Invest 76:1713–1719

    Article  PubMed  CAS  Google Scholar 

  2. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1110–1121

    Article  Google Scholar 

  3. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  4. Lecour S (2009) Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47:32–40

    Article  PubMed  CAS  Google Scholar 

  5. Halestrap AP (2009) What is the mitochondrial transition pore? J Mol Cell Cardiol 46:821–831

    Article  PubMed  CAS  Google Scholar 

  6. Zuurbier CJ, Eerbeek O, Meijer AJ (2005) Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution. Am J Physiol Heart Circ Physiol 289:H496–H499

    Article  PubMed  CAS  Google Scholar 

  7. Zuurbier CJ, Smeele KMA, Eerbeek O (2009) Mitochondrial hexokinase and cardioprotection of the intact heart. J Bioenerg Biomembr 41:181–185

    Article  PubMed  CAS  Google Scholar 

  8. Gürel E, Smeele KM, Eerbeek O, Koeman A, Demirci C, Hollmann MW, Zuurbier CJ (2009) Ischemic preconditioning affects hexokinase activity and HKII in different subcellular compartments throughout cardiac ischemia-reperfusion. J Appl Physiol 106:1909–1916

    Article  PubMed  Google Scholar 

  9. Wu R, Smeele KM, Wyatt E, Ichikawa Y, Eerbeek O, Sun L, Potini V, Hollmann MW, Nagpal V, Heikkinen S, Laakso M, Jujo K, Wasserstrom JA, Zuurbier CJ, Ardehali H (2011) Reduction in hexokinase II levels results in decreased cardiac function and altered remodelling after ischemia-reperfusion injury. Circ Res 108:60–69

    Article  PubMed  CAS  Google Scholar 

  10. Smeele KMA, Southworth R, Wu R, Xie C, Nederlof R, Warley A, Nelson JK, van Horssen P, van den Wijngaard JP, Heikkinen S, Laakso M, Koeman A, Siebes M, Eerbeek O, Akar FG, Ardehali H, Hollmann MW, Zuurbier CJ (2011) Disruption of hexokinase II-mitochondrial binding blocks ischemic preconditioning and causes rapid cardiac necrosis. Circ Res 108:1165–1169

    Article  PubMed  CAS  Google Scholar 

  11. Smeele KM, Eerbeek O, Schaart G, Koeman A, Bezemer R, Nelson JK, Ince C, Nederlof R, Boek M, Laakso M, de Haan A, Drost MR, Hollmann MW, Zuurbier CJ (2012) Reduced hexokinase II impairs muscle function 2 weeks after ischemia-reperfusion through increased cell necrosis and fibrosis. J Appl Physiol 113:608–618

    Article  PubMed  CAS  Google Scholar 

  12. Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin and osmolality. Am J Physiol Heart Circ Physiol 278:H1218–H1224

    PubMed  CAS  Google Scholar 

  13. Tosaki A, Engelman DT, Engelman RM, Das DK (1996) The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc Res 31:526–536

    PubMed  CAS  Google Scholar 

  14. Miki T, Itoh T, Sunaga D, Miura T (2012) Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 11:67

    Article  PubMed  Google Scholar 

  15. Katzen HM, Soderman DD, Wiley CE (1970) Multiple forms of hexokinase. Activities associated with subcellular particulate and soluble fraction of normal and streptozotocin diabetic rat tissues. J Biol Chem 245:4081–4096

    PubMed  CAS  Google Scholar 

  16. Das I (1973) Effects of heart work and insulin on glycogen metabolism in the perfused rat heart. Am J Physiol 224:7–12

    PubMed  CAS  Google Scholar 

  17. Xue W, Cai L, Tan Y, Thistlethwaite P, Kang YJ, Li X, Feng W (2010) Cardiac-specific overexpression of HIF-1α prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice. Am J Pathol 177:97–105

    Article  PubMed  CAS  Google Scholar 

  18. Da Silva D, Ausina P, Alencar EM, Coelho WS, Zancan P, Sola-Penna M (2012) Metformin reverses hexokinase and phosphofructokinase downregulation and intracellular distribution in the heart of diabetic mice. IUBMB Life 64:766–774

    Article  PubMed  Google Scholar 

  19. Smeele KM, ter Horst LH, Koeman A, Heikkinen S, Laakso M, Weber NC, Hollmann MW, Zuurbier CJ (2011) The effects of standard chow and reduced hexokinase II on growth, cardiac and skeletal muscle hexokinase and low-flow cardiac ischaemie-reperfusion injury. Lab Animal 45:160166

    Google Scholar 

  20. Calvert JW, Gundewar S, Jha S, Greer JJM, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signalling. Diabetes 57:696–705

    Article  PubMed  CAS  Google Scholar 

  21. Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM (2008) Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore. Basic Res Cardiol 103:274–284

    Article  PubMed  CAS  Google Scholar 

  22. Gross ER, Hsu AK, Gross GJ (2007) Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 56:127–136

    Article  PubMed  CAS  Google Scholar 

  23. Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croue A, Tourmen Y, Henrion D, Furber A, Prunier F (2011) Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3β signalling. Basic Res Cardiol 106:147–162

    Article  PubMed  CAS  Google Scholar 

  24. Wu Y, Xia ZY, Dou J, Zhang L, Xu JJ, Zhao B, Lei S, Liu HM (2011) Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Mol Biol Rep 38:4327–4335

    Article  PubMed  CAS  Google Scholar 

  25. Xu G, Takashi E, Kudo M, Ishiwata T, Naito Z (2004) Contradictory effects of short- and long-term hyperglycemia on ischemic injury of myocardium via intracellular signalling pathway. Exp Mol Pathol 76:57–65

    Article  PubMed  CAS  Google Scholar 

  26. Da-Silva WS, Gomez-Puyou A, Gomez-Puyou MT, Moreno-Sanchez R, De Felice FG, De Meis L, Oliveira MF, Galina A (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense. J Biol Chem 279:39846–39855

    Article  PubMed  CAS  Google Scholar 

  27. Pasdois P, Parker JE, Griffiths EJ, Halestrap AP (2011) The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J 436:493–505

    Article  PubMed  CAS  Google Scholar 

  28. Majewski N, Nogueira V, Robey RR, Hay N (2004) Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinase. Mol Cell Biol 24:730–740

    Article  PubMed  CAS  Google Scholar 

  29. Ye G, Donthi RV, Metreveli NS, Epstein PN (2005) Overexpression of hexokinase protects hypoxic and diabetic cardiomyocytes by increasing ATP generation. Cardiovasc Toxicol 5:293–300

    Article  PubMed  CAS  Google Scholar 

  30. Balakumar P, Sharma NK (2012) Healing the diabetic heart: does myocardial preconditioning work? Cell Signal 24: 53–59

    Google Scholar 

  31. Miyamoto S, Murphy AN, Brown JH (2008) Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ 15:521–529

    Article  PubMed  CAS  Google Scholar 

  32. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    Article  PubMed  CAS  Google Scholar 

  33. Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ, Tanno M, Yano T, Kuno A, Itoh T, Satoh T, Terashima Y, Ishikawa S, Shimamoto K (2010) Angiotensin II type 1 receptor-mediated upregualtion of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res 106:129–132

    Article  PubMed  CAS  Google Scholar 

  34. Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K (2009) Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phosphor-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes 58:2863–2872

    Article  PubMed  CAS  Google Scholar 

  35. Drenger B, Ostrovsky IA, Barak M, Nechemia-Arbely Y, Ziv E, Axelrod JH (2011) Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase mediated inhibition. Anesthesiology 114:1364–1372

    Article  PubMed  CAS  Google Scholar 

  36. Kewalramani G, An D, Suk Kim M, Ghosh S, Qi D, Abrahani A, Pulinilkunnil T, Sharma V, Wambolt RB, Allard MF, Innis SM, Rodrigues B (2007) AMPK control of myocardial fatty acid metabolism fluctuates with the intensity of insulin-deficient diabetes. J Mol Cell Cardiol 42:333–342

    Article  PubMed  CAS  Google Scholar 

  37. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection to inhibit the mitochondrial permeability transition pore. J Clin Invest 113: 1535–1549

    Google Scholar 

  38. Pastorino JG, Hoek JB, Shulga N (2005) Activation of glycogen synthase kinase -3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65:10545–10554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: TBAG-107T212) and by Scientific Research Projects Coordination Unit of Istanbul University (Grants UDP-16146, UDP-25255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coert J. Zuurbier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurel, E., Ustunova, S., Kapucu, A. et al. Hexokinase cellular trafficking in ischemia–reperfusion and ischemic preconditioning is altered in type I diabetic heart. Mol Biol Rep 40, 4153–4160 (2013). https://doi.org/10.1007/s11033-013-2495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2495-5

Keywords

Navigation