Skip to main content
Log in

Expression patterns of a cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. A cDNA sequence encoding the CAD gene was isolated from the leaves of Ginkgo biloba L, designated as GbCAD1. The full-length cDNA of GbCAD1 was 1,494 bp containing a 1,074 bp open reading frame encoding a polypeptide of 357 amino acids with a calculated molecular mass of 38.7 kDa and an isoelectric point of 5.74. Comparative and bioinformatic analyses revealed that GbCAD1 showed extensive homology with CADs from other gymnosperm species. Southern blot analysis indicated that GbCAD1 belonged to a multi-gene family. Phylogenetic tree analysis revealed that GbCAD1 shared the same ancestor in evolution with other CADs and had a further relationship with other gymnosperm species. GbCAD1 was an enzyme being pH-dependent and temperature-sensitive, and showing a selected catalyzing. Tissue expression pattern analysis showed that GbCAD1 was constitutively expressed in stems and roots, especially in the parts of the pest and disease infection, with the lower expression being found in two- to four-year-old stem. Further analysis showed the change in lignin content had some linear correlation with the expression level of GbCAD1 mRNA in different tissues. The increased expression of GbCAD1 was detected when the seedling were treated with exogenous abscisic acid, salicylic acid, ethephon, ultraviolet and wounding. These results indicate that the GbCAD1 gene may play a role in the resistance mechanism to biotic and abiotic stresses as well as in tissue-specific developmental lignification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164(1):17–30

    Article  CAS  Google Scholar 

  2. O’Malley DM, Porter S, Sederoff RR (1992) Purification, characterization, and cloning of cinnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L.). Plant Physiol 98(4):1364–1371

    Article  PubMed  Google Scholar 

  3. Brill EM, Abrahams S, Hayes CM, Jenkins CLD, Watson JM (1999) Molecular characterisation and expression of a wound-inducible cDNA encoding a novel cinnamyl-alcohol dehydrogenase enzyme in lucerne (Medicago sativa L.). Plant Mol Biol 41(2):279–291

    Article  PubMed  CAS  Google Scholar 

  4. Kim YH, Bae JM, Huh GH (2010) Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweetpotato in response to plant developmental stage and environmental stress. Plant Cell Rep 29(7):779–791

    Article  PubMed  CAS  Google Scholar 

  5. Lynch D, Lidgett A, McInnes R, Huxley H, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.). J Plant Physiol 159(6):653–660

    Article  CAS  Google Scholar 

  6. Menden B, Kohlhoff M, Moerschbacher BM (2007) Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry 68(4):513–520

    Article  PubMed  CAS  Google Scholar 

  7. Tronchet M, Balague C, Kroj T, Jouanin L, Roby D (2010) Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11(1):83–92

    Article  PubMed  CAS  Google Scholar 

  8. Marroni F, Pinosio S, Zaina G, Fogolari F, Felice N, Cattonaro F, Morgante M (2011) Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene. Tree Genet Genomes 7(5):1011–1023

    Article  Google Scholar 

  9. Smith J, Luo Y (2004) Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biot 64(4):465–472

    Article  CAS  Google Scholar 

  10. van Beek TA (2002) Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 967(1):21–55

    Article  PubMed  Google Scholar 

  11. Shan LL, Li X, Wang P, Cai C, Zhang B, Sun CD, Zhang WS, Xu CJ, Ferguson I, Chen KS (2008) Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Planta 227(6):1243–1254

    Article  PubMed  CAS  Google Scholar 

  12. Cheng H, Li L, Cheng S, Cao F, Wang Y, Yuan H (2011) Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep 30(1):49–62

    Article  PubMed  CAS  Google Scholar 

  13. Jansson S, Meyer-Gauen G, Cerff R, Martin W (1994) Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. J Mol Evol 39(1):34–46

    Article  PubMed  Google Scholar 

  14. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  PubMed  CAS  Google Scholar 

  15. Ma QH (2010) Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. J Exp Bot 61(10):2735–2744

    Article  PubMed  CAS  Google Scholar 

  16. Kirk TK, Obst JR (1988) Lignin determination. Method Enzymol 161(5):87–101

    Article  CAS  Google Scholar 

  17. Lu X, Liu Y, An J, Hu H, Peng S (2010) Isolation of a cinnamoyl CoA reductase gene involved in formation of stone cells in pear (Pyrus pyrifolia). Acta Physiol Plant 10(7):1–7

    Google Scholar 

  18. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  19. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    Article  PubMed  CAS  Google Scholar 

  20. Youn B, Camacho R, Moinuddin SGA, Lee C, Davin LB, Lewis NG, Kang CH (2006) Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org Biomol Chem 4(9):1687–1697

    Article  PubMed  CAS  Google Scholar 

  21. Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12(2):857–872

    Article  PubMed  CAS  Google Scholar 

  22. Lütcke H, Chow K, Mickel F, Moss K, Kern H, Scheele G (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6(1):43–49

    PubMed  Google Scholar 

  23. Cheng H, Li L, Cheng S, Cao F, Xu F, Wang Y, Jiang D, Yuan H, Wu C (2012) Characterization of a cinnamoyl-CoA reductase gene in Ginkgo biloba: effects on lignification and environmental stresses. Afr J Biotechnol 11(26):6780–6794

    CAS  Google Scholar 

  24. Cheng S, Wang Y, Li J, Fei Y, Zhu G (2004) Study on the relationship between the endogenous hormones and flavonoids in Ginkgo biloba leaf. Scientia Silvae Sinicae 40(6):45–49 (in Chinese)

    CAS  Google Scholar 

  25. Cheng S, Wang Y, Liu W, Chen K (2005) Effects of plant growth regulators on phenylalanine ammonia-lyase activities in leaves of Ginkgo biloba in vitro. J Plant Resour Environ 14(1):20–22 (in Chinese)

    CAS  Google Scholar 

  26. Wang Y, Cheng S (2002) Studies on the effects of regulating measures on the flavonoids contents in Ginkgo biloba leaves. Hubei Agric Sciences 25(5):103–105

    Google Scholar 

  27. Xu F, Cai R, Cheng S, Du H, Wang Y (2008) Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr J Biotechnol 7(6):721–729

    Google Scholar 

  28. Cheng S, Wang Y, Fei Y, Zhu G (2004) Studies on the effects of different treatments on flavonoids contents in Ginkgo biloba leaves and their regulating mechanism. J Fruit Sci 21(2):116–119 (in Chinese)

    Google Scholar 

  29. Saballos A, Ejeta G, Sanchez E, Kang CH, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the Brown midrib6 gene. Genetics 181(2):783–795

    Article  PubMed  CAS  Google Scholar 

  30. Fan L, Shi WJ, Hu WR, Hao XY, Wang DM, Yuan H, Yan HY (2009) Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. J Integr Plant Biol 51(7):626–637

    Article  PubMed  CAS  Google Scholar 

  31. Li X, Yang Y, Yao J, Chen G, Zhang Q, Wu C (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69(6):685–697

    Article  PubMed  CAS  Google Scholar 

  32. Kim SJ, Kim KW, Cho MH, Franceschi VR, Davin LB, Lewis NG (2007) Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations. Phytochemistry 68(14):1957–1974

    Article  PubMed  CAS  Google Scholar 

  33. Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Séguin A, Lapierre C, Jouanin L (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol 132(2):848–860

    Article  PubMed  CAS  Google Scholar 

  34. Barakat A, Bagniewska-Zadworna A, Choi A, Plakkat U, DiLoreto D, Yellanki P, Carlson J (2009) The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression. BMC Plant Biol 9(1):26–41

    Article  PubMed  Google Scholar 

  35. El-Kereamy A, Chervin C, Roustan JP, Cheynier V, Souquet JM, Moutounet M, Raynal J, Ford C, Latché A, Pech JC (2003) Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plantarum 119(2):175–182

    Article  CAS  Google Scholar 

  36. Bate NJ, Orr J, Ni W, Meromi A, Nadler-Hassar T, Doerner PW, Dixon RA, Lamb CJ, Elkind Y (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. PNAS USA 91(16):7608–7612

    Article  PubMed  CAS  Google Scholar 

  37. Bedon F, Levasseur C, Grima-Pettenati J, Séguin A, MacKay J (2009) Sequence analysis and functional characterization of the promoter of the Picea glauca cinnamyl alcohol dehydrogenase gene in transgenic white spruce plants. Plant Cell Rep 28(5):787–800

    Article  PubMed  CAS  Google Scholar 

  38. Rahantamalala A, Rech P, Martinez Y, Chaubet-Gigot N, Grima-Pettenati J, Pacquit V (2010) Coordinated transcriptional regulation of two key genes in the lignin branch pathway-CAD and CCR-is mediated through MYB-binding sites. BMC Plant Biol 10(1):130

    Article  PubMed  Google Scholar 

  39. Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants. Salicylic acid: a plant hormone. Springer. doi:10.1007/1-4020-5184-1

  40. Ferrer JL, Austin M, Stewart C Jr, Noel J (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46(3):356–370

    Article  PubMed  CAS  Google Scholar 

  41. Fofana B, McNally DJ, Labbé C, Boulanger R, Benhamou N, Séguin A, Bélanger RR (2002) Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiol Mol Plant P 61(2):121–132

    CAS  Google Scholar 

  42. Meer I, Stuitje A, Mol J, Verma D (1993) Control of plant gene expression. In: Verma D (ed) Regulation of general phenylpropanoid and flavonoid gene expression. CABI, Oxford, pp 125–155

    Google Scholar 

  43. Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2(6):503–512

    PubMed  CAS  Google Scholar 

  44. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124(4):1–17

    Article  Google Scholar 

  45. Nishihara E, Takahashi K, Nakata N, Tanaka K, Watanabe K (2001) Effect of 5-aminolevulinic acid (ALA) on photosynthetic rate, hydrogen peroxide content, antioxidant level and active oxygen-scavenging enzymes in spinach (Spinacia oleracea L.). J Jpn Soc Hortic Sci 70(3):346–352

    Article  CAS  Google Scholar 

  46. Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J Plant Physiol 160(9):1085–1091

    Article  PubMed  CAS  Google Scholar 

  47. Wang LJ, Jiang WB, Huang BJ (2004) Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol Plantarum 121(2):258–264

    Article  CAS  Google Scholar 

  48. Xu F (2008) Cloning and expression of GbPAL and GbANS genes and effect of ALA on the content of flavonoids in Ginkgo biloba. Dissertation, Shandong Agricultural University, Taian

  49. Xu F, Li L, Zhang W, Cheng H, Sun N, Cheng S, Wang Y (2012) Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol Biol Rep 39(3):2285–2296

    Article  PubMed  CAS  Google Scholar 

  50. Zhang L, Wang G, Chang J, Liu J, Cai J, Rao X, Zhong J, Xie J, Zhu S (2010) Effects of 1-MCP and ethylene on expression of three CAD genes and lignification in stems of harvested Tsai Tai (Brassica chinensis). Food Chem 123(1):32–40

    Article  CAS  Google Scholar 

  51. Barakat A, Bagniewska-Zadworna A, Frost C, Carlson J (2010) Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P. nigra): evidence from herbivore damage for sub functionalization and functional divergence. BMC Plant Biol 10(1):100–110

    Article  PubMed  Google Scholar 

  52. Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13(7):1567–1586

    PubMed  CAS  Google Scholar 

  53. Goffner D, Van Doorsselaere J, Yahiaoui N, Samaj J, Grima-Pettenati J, Boudet AM (1998) A novel aromatic alcohol dehydrogenase in higher plants: molecular cloning and expression. Plant Mol Biol 36(5):755–765

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratories (20011BLKF238 and 2011BH0030), the Natural Science Foundation of China (30971974), and University-industry Cooperation Fund of Hubei Educational Office (CXY2009B009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiyuan Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_2111_MOESM1_ESM.doc

Fig. 1S The predicted three-dimensional structure of GbCAD1 protein. Data were analysed by the Swiss-model software, and the figure was prepared with the program Ds ViewerPro 5.0. α-helices are indicated in red and green, β-sheets by blue braids, and turns and coils by gray curled braids. The NADPH binding, Zn binding and substrate binding sites are also indicated. (DOC 521 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Li, L., Xu, F. et al. Expression patterns of a cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba . Mol Biol Rep 40, 707–721 (2013). https://doi.org/10.1007/s11033-012-2111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2111-0

Keywords

Navigation