Skip to main content
Log in

Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ionizing radiation directly and indirectly affects gene expression within the plant genome. To access the antioxidant response of rice to different types of ionizing radiation, rice seeds were exposed to gamma-ray, cosmic-ray and ion beam radiation. Exposure to ionizing radiation dramatically decreased the shoot length in all plants but not the root length compared with a non-irradiated plant. Electron spin resonance, confirmed that the number of free radicals in cell was greatly increased by different types of ionizing radiation. The measurement of the MDA, chlorophyll, carotenoids contents and activity of antioxidant enzymes revealed that gamma-ray and cosmic-ray, but not ion beam, ionization deceased chlorophyll and carotenoids contents, while all three ionization treatments increased the activities of peroxidase, ascorbate peroxidase, and superoxide dismutase compared with the non-irradiated plants. Microarray analysis using Affymetrix GeneChip was used to establish the gene transcript profiles of rice genes regarding ROS scavenging and signal transduction pathways after ionization treatment. Many of the rice genes involved in ROS scavenging and signal transduction pathways showed induction or repression that had increased more than twofold after ionization treatment. In particular, genes associated with electron transport, such as NADPH oxidase-like and alternative oxidase, were often down-regulated by more than twofold in response to the ionization treatments. In our transcriptomic profile analysis, we confirmed that the expression of rice genes associated with ROS scavenging and signal transduction pathways was induced or repressed to different degrees by the different types of ionizing radiations, as in other environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DEGs:

Differentially expressed genes

ESR:

Electron spin resonance

GO:

Gene Ontology

LET:

Linear energy transfer

MDA:

Malonaldehyde

MS:

Murashige–Skoog

POD:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  1. Jing N, Xianghua L, Leslie MH, Lizhong X (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    Article  Google Scholar 

  2. Felipe KT, Larissa M-B, Vinicius CG, Rogerio M, Marcia M-P (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314

    Article  Google Scholar 

  3. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  4. Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  5. Nagano AJ, Fukazawa M, Hayashi M, Ikeuchi M, Tsukaya H, Nishimura M, Hara-Nishimura I (2008) AtMap1: a DNA microarray for genomic deletion mapping in Arabidopsis thaliana. Plant J 56:1058–1065

    Article  PubMed  CAS  Google Scholar 

  6. Kovalchuk O, Burke P, Arkhipov A, Kuchma N, James SJ, Kovalchuk I, Pogribny I (2003) Genome hypermethylation in Pinus silvestris of Chernobyl—a mechanism for radiation adaptation? Mutat Res 529:13–20

    Article  PubMed  CAS  Google Scholar 

  7. Holst RW, Nagle DJ (1997) Radiation effects on plants. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. Lewis Publishers, Boca Raton, pp 37–81

    Chapter  Google Scholar 

  8. Roldan-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681:169–179

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi T, Aoki S (1985) Effect of irradiation on the carbohydrate metabolism responsible for sucrose accumulation in potatoes. J Agric Food Chem 33:13–17

    Google Scholar 

  10. Ferullo J-M, Nespoulous L, Triantaphylides C (1994) Gamma ray-induced changes in the synthesis of tomato pericarp protein. Plant Cell Environ 17:901–911

    Article  CAS  Google Scholar 

  11. Nagata T, Todoriki S, Hayashi T, Shibata Y, Mori M, Kanegae H, Kikuchi S (1999) γ-Radiation induces leaf trichome formation in Arabidopsis. Plant Physiol 120:113–119

    Article  PubMed  CAS  Google Scholar 

  12. Soriano JD (1961) Mutagenic effects of gamma radiation on rice. Bot Gaz 123:57–63

    Article  Google Scholar 

  13. Stoeva N, Zlatev Z, Bineva Z (2001) Physiological response of beans (Phaseolus vulgaris L.) to gamma-radiation contamination, II. Water-exchange, respiration and peroxidase activity. J Environ Prot Ecol 2:304–308

    CAS  Google Scholar 

  14. Zhou LB, Li WJ, Dong XC, Yu LX, Li Q, Zhou GM, Gao QX (2006) Effects of ion beam irradiation on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Nucl Instrum Methods Phys Res B 244:349–353

    Article  CAS  Google Scholar 

  15. Mashinsky AL, Nechitailo GS (2001) Results and prospects of studying the gravitationally sensitive systems of plants under conditions of space flight. Space Res 39:1–12

    Google Scholar 

  16. Bayonove J, Burg M, Delpoux M, Mir A (1984) Biological changes observed on rice and biological and genetic changes observed on tobacco after space flight in the orbital station Salyut-7 (Biobloc III experiment). Adv Space Res 4(10):97–101

    Article  PubMed  CAS  Google Scholar 

  17. Kuang A, Musgrave ME, Matthews SW (1996) Modification of reproductive development in Arabidopsis thaliana under space-flight conditions. Planta 198:588–594

    Article  PubMed  CAS  Google Scholar 

  18. Danby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 23(11):547–552

    Article  Google Scholar 

  19. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  21. Abei H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 673–684

    Google Scholar 

  22. Pütter J (1974) Peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 685–690

    Google Scholar 

  23. Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of ascorbate dependent reduction of nitroblue tetrazolium. Anal Biochem 112:540–546

    Article  Google Scholar 

  24. Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  25. Jain M, Nijhawan A, arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed  CAS  Google Scholar 

  26. Wu Z, Irazarry RA, Gentleman R, Murillo FM, Spencer F (2004) A model based background adjustment for oligonucleotide expression arrays. Johns Hopkins University, Dept. of biostatistics Working Papers Paper 1

  27. Yu X, Wu H, Wei LJ, Cheng ZL, Xin P, Huang CL, Zhabg KP, Sun YQ (2007) Characteristics of phenotype and genetic mutations in rice after spaceflight. Adv Space Res 40:528–534

    Article  CAS  Google Scholar 

  28. Zhang BY, Wei XL, Yang FY, Zhang YW (2011) Effects of space flight factors on genetic diversity of Buchloe dactyloides seeds. Afr J Biotechnol 10(60):12812–12820

    CAS  Google Scholar 

  29. Polat M, Korkmaz M (2003) Use of electron spin resonance technique for the detection of irradiated rice seeds (Oryza sativa L.). Int J Food Sci Technol 38:653–659

    Article  CAS  Google Scholar 

  30. Finkelstein E, Rosen GM, Rauckman EJ (1980) Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch Biochem Biophys 200:1–16

    Article  PubMed  CAS  Google Scholar 

  31. Miyazaki T, Matsubara J, Matsumoto T, Khan H (1996) Reaction of metallothionein and long-lived radicals in murine liver. Radiat Phys Chem 48:293–296

    Article  CAS  Google Scholar 

  32. Kumagai J, Katoh H, Kumada T, Tanaka A, Tano S, Miyazaki T (2000) Strong resistance of Arabidopsis thaliana and Raphanus sativus seeds for ionizing radiation as studied by ESR, ENDOR, ESE spectroscopy and germination measurement: effect of long-lived and super-long-lived radicals. Radiat Phys Chem 57:75–83

    Article  CAS  Google Scholar 

  33. Kumagai J, Kumada T, Watanabe M, Miyazaki T (2000) Electron spin echo study of long-lived radicals which cause mutation in gamma-ray irradiated mammalian cells. Spectrochim Acta Part A 56:2509

    Article  CAS  Google Scholar 

  34. Shen B, Zhuang JY, Zhang KQ, Dai WM, Lu Y, Fu LQ, Ding JM, Zheng KL (2007) QTL mapping of chlorophyll contents in rice. Agric Sci China 6(1):17–24

    Article  CAS  Google Scholar 

  35. Liu ZQ, Liu ZY, Ma DP, Zeng SF (1984) A study on the relation between chlorophyll content and photosynthesis rate of rice. Acta Agron Sin 10:57–64 (in Chinese)

    Google Scholar 

  36. Chen WF, Xu ZJ, Zhang LB (1995) Physiological basis of super high yield breeding of rice. Liaoning Science and Technology Press, Shenyang, pp 123–150 (in Chinese)

  37. Yang QH, Lu W, Hu ML, Wang CM, Zhang RX, Yano M, Wan JM (2003) QTL and epistatic interaction underlying leaf chlorophyll and H2O2 content variation in rice. Acta Genet Sin 30:245–250

    PubMed  CAS  Google Scholar 

  38. Borzouei A, Kafi M, Khazaei H, Naseriyan B, Majdabadi A (2010) Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Park J Bot 42(4):2281–2290

    Google Scholar 

  39. Jia CF, Li AL (2008) Effects of gamma radiation on mutant induction of Fagopyrum dibotrys Hara. Photosynthetica 46(3):363–369

    Article  CAS  Google Scholar 

  40. Moleshko GI, Anton’yan AA, Sycheyev VN, Solontsova IP, Shetlik I, Doukha Y (1991) The effects of space flight factors on the pigment system of one-celled algae. USSR Space Life Sci Digest 31:43–45

    Google Scholar 

  41. Laurinavichius RA, Yaroshyus AV, Marchyukaytis A, Shvyaghdene DV, Mashinskiy AL (1986) Metabolism of pea plants grown under space flight conditions. USSR Space Sci Digest 4:23–25

    Google Scholar 

  42. Kim JH, Moon YR, Wi SG, Kim JS, Lee MH, Chung BY (2008) Differential radiation sensitivities of Arabidopsis plants at various developmental stage. Photosynthsis 24:1491–1495

    Google Scholar 

  43. Zhang X, Wu L, Yu L, Wei S, Liu J, Yu Z (2007) Effect of Ar ion beam implantation on morphological and physiological characteristics of Liquorice (Glycyrrhiza uralensis Fisch) under short-term artificial drought conditions. Plasma Sci Technol 9:235–240

    Article  CAS  Google Scholar 

  44. Singh BB (1971) Effect of gamma-irradiation on chlorophyll content of maize leaves. Radiat Bot 11:243–244

    Article  CAS  Google Scholar 

  45. Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  PubMed  CAS  Google Scholar 

  46. Vandenhove H, Vanhoudt N, Cuypers A, Hees MV, Wannijin J, Horemans N (2010) Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways. Plant Physiol Biochem 48:778–786

    Article  PubMed  CAS  Google Scholar 

  47. Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  48. Lee HS, Yo SH, Kwon SY, Kim J-S, Kwak S-S (1991) Gamma radiation-induced changes of antioxidant enzymes in callus cultures of cassava (Manihot esculenta Crantz). Kor J Plant Tiss Cult 26:53–58

    Article  Google Scholar 

  49. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  50. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  51. Holmgren A (1985) Thioredoxin. Ann Rev Biochem 54:237–271

    Article  PubMed  CAS  Google Scholar 

  52. Sha S, Minakuchi K, Higaki N, Sato K, Ohtsuki K, Kurata A, Yoshikawa H, Kotaru M, Masumura T, Ichihara K, Tanaka K (1997) Purification and characterization of glutaredoxin (thioltransferase) from rice (Oryza sativa L.). J Biochem 121:842–848

    Article  PubMed  CAS  Google Scholar 

  53. Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex Ι) from bovine heart mitochondria. Proc Natl Acad Sci USA 103(20):7607–7612

    Article  PubMed  CAS  Google Scholar 

  54. Remacle C, Barbieri MR, Cardol P, Jamel PP (2008) Eukaryotic complex l: functional diversity and experimental systems to unravel the assembly process. Mol Genet Genomics 280:93–110

    Article  PubMed  CAS  Google Scholar 

  55. Heazlewood JL, Howell KA, Millar AH (2003) Mitochondrial complex l from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochem Biophys Acta 1604(3):159–169

    Article  PubMed  CAS  Google Scholar 

  56. Fumitaka A, Koji s, Kiyoyuki M, Kinya T (2002) A single nucleotide polymorphism in the alternative oxidase gene among rice varieties differing in low temperature tolerance. FEBS Lett 527:181–185

    Article  Google Scholar 

  57. Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  PubMed  CAS  Google Scholar 

  58. Ito Y, Saisho D, Nakazono M, Tsutsumi N, Hirai A (1997) Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature. Gene 203:121–129

    Article  PubMed  CAS  Google Scholar 

  59. Munnik T, Meijer HJG, Ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    Article  PubMed  CAS  Google Scholar 

  60. Sang Y, Cui D, Wang X (2001) Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol 126:1449–1458

    Article  PubMed  CAS  Google Scholar 

  61. Foreman J, Demidchik V, Bothwell JHF, Myiona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDJ, Davis JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  62. Li HY, Chang CS, Lu LS, Liu CA, Chan MT, Charng YY (2003) Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato. Bot Bull Acad Sin 44:129–140

    CAS  Google Scholar 

  63. Zou J, Liu AL, Chen XB, Zhou XY, Gao GF, Wang WF, Zhang XW (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166:851–861

    Article  PubMed  CAS  Google Scholar 

  64. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    Article  PubMed  CAS  Google Scholar 

  65. Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang H (2009) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389:556–561

    Article  PubMed  CAS  Google Scholar 

  66. Sun SJ, Guo SQ, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61(10):2807–2818

    Article  PubMed  CAS  Google Scholar 

  67. Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  PubMed  CAS  Google Scholar 

  68. Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  PubMed  CAS  Google Scholar 

  69. Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ, Zhang YJ, Wang LJ (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1–12

    Article  Google Scholar 

  70. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Caraggio I (2004) Overexpression of the rice OsMyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    Article  PubMed  CAS  Google Scholar 

  71. Kim DS, Kim J-B, Goh EJ, Kim W-J, Lim SH, Seo YW, Jang CS, Kang SY (2011) Antioxidant response of Arabidopsis plants to gamma irradiation: genome-wide expression profiling of the ROS scavenging and signal transduction pathways. J Plant Physiol 168(16):1960–1971

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Korea Atomic Energy Research Institute (KAERI) and the Ministry of Education, Science, and Technology (MEST), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sub Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 191 kb)

Supplementary material 2 (PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SH., Song, M., Lee, K.J. et al. Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation. Mol Biol Rep 39, 11231–11248 (2012). https://doi.org/10.1007/s11033-012-2034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2034-9

Keywords

Navigation