Skip to main content

Advertisement

Log in

Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

With more than 40 subunits, one FMN co-factor and eight FeS clusters, complex I or NADH:ubiquinone oxidoreductase is the largest multimeric respiratory enzyme in the mitochondria. In this review, we focus on the diversity of eukaryotic complex I. We describe the additional activities that have been reported to be associated with mitochondrial complex I and discuss their physiological significance. The recent identification of complex I-like enzymes in the hydrogenosome, a mitochondria-derived organelle is also discussed here. Complex I assembly in the mitochondrial inner membrane is an intricate process that requires the cooperation of the nuclear and mitochondrial genomes. The most prevalent forms of mitochondrial dysfunction in humans are deficiencies in complex I and remarkably, the molecular basis for 60% of complex I-linked defects is currently unknown. This suggests that mutations in yet-to-be-discovered assembly genes should exist. We review the different experimental systems for the study of complex I assembly. To our knowledge, in none of them, large screenings of complex I mutants have been performed. We propose that the unicellular green alga Chlamydomonas reinhardtii is a promising system for such a study. Complex I mutants can be easily scored on a phenotypical basis and a large number of transformants generated by insertional mutagenesis can be screened, which opens the possibility to find new genes involved in the assembly of the enzyme. Moreover, mitochondrial transformation, a recent technological advance, is now available, allowing the manipulation of all five complex I mitochondrial genes in this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. nqo for NADH:quinone oxido-reductase and nuo for NADH:ubiquinone oxido-reductase.

  2. Complex I typically contains eight FeS clusters (referred to as N1a, N3, N1b, N4, N5, N6a, N6b, N2). An additional FeS cluster (N7) was found in four bacterial species including Escherichia coli and T. thermophilus but is not evolutionary conserved (Ohnishi 1998; Sazanov 2007).

  3. Seven ND subunits are encoded in the mammalian mitochondrial genome and nine ND subunits are encoded in the mitochondria of vascular plants. The mitochondrial genomes of the green alga Chlamydomonas reinhardtii and the protist Reclinomonas americana encode for 5 and 12 ND subunits, respectively.

  4. Hence the terminology of dark-minus or dark-dier phenotype for complex III or complex IV mutants.

References

  • Abdrakhmanova A, Dobrynin K, Zwicker K, Kerscher S, Brandt U (2005) Functional sulfurtransferase is associated with mitochondrial complex I from Yarrowia lipolytica, but is not required for assembly of its iron–sulfur clusters. FEBS Lett 579:6781–6785

    PubMed  CAS  Google Scholar 

  • Abdrakhmanova A, Zickermann V, Bostina M, Radermacher M, Schagger H, Kerscher S, Brandt U (2004) Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. Biochim Biophys Acta 1658:148–156

    PubMed  CAS  Google Scholar 

  • Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, Bruno C, Moraes CT, Enriquez JA (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815

    PubMed  CAS  Google Scholar 

  • Ahlers PM, Garofano A, Kerscher SJ, Brandt U (2000) Application of the obligate aerobic yeast Yarrowia lipolytica as a eucaryotic model to analyse Leigh syndrome mutations in the complex I core subunits PSST and TYKY. Biochim Biophys Acta 1459:258–265

    PubMed  CAS  Google Scholar 

  • Angell JE, Lindner DJ, Shapiro PS, Hofmann ER, Kalvakolanu DV (2000) Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J Biol Chem 275:33416–33426

    PubMed  CAS  Google Scholar 

  • Antonicka H, Ogilvie I, Taivassalo T, Anitori RP, Haller RG, Vissing J, Kennaway NG, Shoubridge EA (2003) Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 278:43081–43088

    PubMed  CAS  Google Scholar 

  • Barrientos A, Barros MH, Valnot I, Rotig A, Rustin P, Tzagoloff A (2002) Cytochrome oxidase in health and disease. Gene 286:53–63

    PubMed  CAS  Google Scholar 

  • Batandier C, Picard A, Tessier N, Lunardi J (2000) Identification of a novel T398A mutation in the ND5 subunit of the mitochondrial complex I and of three novel mtDNA polymorphisms in two patients presenting ocular symptoms. Hum Mutat 16:532

    PubMed  CAS  Google Scholar 

  • Bellomo F, Piccoli C, Cocco T, Scacco S, Papa F, Gaballo A, Boffoli D, Signorile A, D’Aprile A, Scrima R, Sardanelli AM, Capitanio N, Papa S (2006) Regulation by the cAMP cascade of oxygen free radical balance in mammalian cells. Antioxid Redox Signal 8:495–502

    PubMed  CAS  Google Scholar 

  • Blacque OE, Cevik S, Kaplan OI (2008) Intraflagellar transport: from molecular characterisation to mechanism. Front Biosci 13:2633–2652

    PubMed  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    PubMed  CAS  Google Scholar 

  • Bradley PJ, Lahti CJ, Plumper E, Johnson PJ (1997) Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493

    PubMed  CAS  Google Scholar 

  • Brangeon J, Sabar M, Gutierres S, Combettes B, Bove J, Gendy C, Chetrit P, des Francs-Small CC, Pla M, Vedel F, De Paepe R (2000) Defective splicing of the first nad4 intron is associated with lack of several complex I subunits in the Nicotiana sylvestris NMS1 nuclear mutant. Plant J 21:269–280

    PubMed  CAS  Google Scholar 

  • Braun HP, Schmitz UK (1995) The bifunctional cytochrome c reductase/processing peptidase complex from plant mitochondria. J Bioenerg Biomembr 27:423–436

    PubMed  CAS  Google Scholar 

  • Braun HP, Zabaleta E (2007) Carbonic anhydrase subunits of the mitochondrial NADH dehydrogenase complex (complex I) in plants. Physiol Plant 129:114–122

    CAS  Google Scholar 

  • Bulteau A-L, O’Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI (2004) Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305:242–245

    PubMed  CAS  Google Scholar 

  • Byers DM, Gong H (2007) Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem Cell Biol 85:649–662

    PubMed  CAS  Google Scholar 

  • Cardol P, Boutaffala L, Memmi S, Devreese B, Matagne RF, Remacle C (2008) In Chlamydomonas, the loss of ND5 subunit prevents the assembly of whole mitochondrial complex I and leads to the formation of a low abundant 700 kDa subcomplex. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1777:388–396

    Google Scholar 

  • Cardol P, Gonzalez-Halphen D, Reyes-Prieto A, Baurain D, Matagne RF, Remacle C (2005) The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. Plant Physiol 137:447–459

    PubMed  CAS  Google Scholar 

  • Cardol P, Lapaille M, Minet P, Franck F, Matagne RF, Remacle C (2006) ND3 and ND4L subunits of mitochondrial complex I, both nucleus encoded in Chlamydomonas reinhardtii, are required for activity and assembly of the enzyme. Eukaryot Cell 5:1460–1467

    PubMed  CAS  Google Scholar 

  • Cardol P, Matagne RF, Remacle C (2002) Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. J Mol Biol 319:1211–1221

    PubMed  CAS  Google Scholar 

  • Cardol P, Vanrobaeys F, Devreese B, Van Beeumen J, Matagne RF, Remacle C (2004) Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. Biochim Biophys Acta 1658:212–224

    PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2:117–126

    PubMed  CAS  Google Scholar 

  • Carroll J, Shannon RJ, Fearnley IM, Walker JE, Hirst J (2002) Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. J Biol Chem 277:50311–50317

    PubMed  CAS  Google Scholar 

  • Cermakova P, Zk Verner, Man P, Lukes J, Horvath A (2007) Characterization of the NADH:ubiquinone oxidoreductase (complex I) in the trypanosomatid Phytomonas serpens (Kinetoplastida). FEBS J 274:3150–3158

    PubMed  CAS  Google Scholar 

  • Chen R, Fearnley IM, Peak-Chew SY, Walker JE (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J Biol Chem 279:26036–26045

    PubMed  CAS  Google Scholar 

  • Cipollone R, Ascenzi P, Visca P (2007) Common themes and variations in the rhodanese superfamily. IUBMB Life 59:51–59

    PubMed  CAS  Google Scholar 

  • Cittadella R, Andreoli V, Manna I, Oliveri RL, Quattrone A (2001) A new human mtDNA polymorphism: MTND6: 14562 (C- > T). Hum Mutat 17:238

    PubMed  CAS  Google Scholar 

  • Crimi M, Sciacco M, Galbiati S, Bordoni A, Malferrari G, Del Bo R, Biunno I, Bresolin N, Comi GP (2002) A collection of 33 novel human mtDNA homoplasmic variants. Hum Mutat 20:409

    PubMed  Google Scholar 

  • Cronan JE, Fearnley IM, Walker JE (2005) Mammalian mitochondria contain a soluble acyl carrier protein. FEBS Lett 579:4892–4896

    PubMed  CAS  Google Scholar 

  • de Longevialle AF, Meyer EH, Andres C, Taylor NL, Lurin C, Millar AH, Small ID (2007) The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. Plant Cell 19:3256–3265

    PubMed  Google Scholar 

  • De Rasmo D, Panelli D, Sardanelli AM, Papa S (2008) cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cell Signal 20:989–997

    PubMed  Google Scholar 

  • DeCorby A, Gaskova D, Sayles LC, Lemire BD (2007) Expression of Ndi1p, an alternative NADH:ubiquinone oxidoreductase, increases mitochondrial membrane potential in a C. elegans model of mitochondrial disease. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1767:1157–1163

    Google Scholar 

  • Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26:4872–4881

    PubMed  CAS  Google Scholar 

  • Djafarzadeh R, Kerscher S, Zwicker K, Radermacher M, Lindahl M, Schagger H, Brandt U (2000) Biophysical and structural characterization of proton-translocating NADH-dehydrogenase (complex I) from the strictly aerobic yeast Yarrowia lipolytica. Biochim Biophys Acta 1459:230–238

    PubMed  CAS  Google Scholar 

  • Duarte M, Mota N, Pinto L, Videira A (1998) Inactivation of the gene coding for the 30.4-kDa subunit of respiratory chain NADH dehydrogenase: is the enzyme essential for Neurospora? Mol Gen Genet 257:368–375

    PubMed  CAS  Google Scholar 

  • Duarte M, Schulte U, Ushakova AV, Videira A (2005) Neurospora strains harboring mitochondrial disease-associated mutations in iron–sulfur subunits of complex I. Genetics 171:91–99

    PubMed  CAS  Google Scholar 

  • Duarte M, Sousa R, Videira A (1995) Inactivation of genes encoding subunits of the peripheral and membrane arms of neurospora mitochondrial complex I and effects on enzyme assembly. Genetics 139:1211–1221

    PubMed  CAS  Google Scholar 

  • Duarte M, Videira A (2000) Respiratory chain complex I is essential for sexual development in neurospora and binding of iron–sulfur clusters are required for enzyme assembly. Genetics 156:607–615

    PubMed  CAS  Google Scholar 

  • Duby F, Matagne RF (1999) Alteration of dark respiration and reduction of phototrophic growth in a mitochondrial DNA deletion mutant of Chlamydomonas lacking cob, nd4, and the 3′ end of nd5. Plant Cell 11:115–125

    PubMed  CAS  Google Scholar 

  • Dunning CJ, McKenzie M, Sugiana C, Lazarou M, Silke J, Connelly A, Fletcher JM, Kirby DM, Thorburn DR, Ryan MT (2007) Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 26:3227–3237

    PubMed  CAS  Google Scholar 

  • Dyall SD, Johnson PJ (2000) Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. Curr Opin Microbiol 3:404–411

    PubMed  CAS  Google Scholar 

  • Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107

    PubMed  CAS  Google Scholar 

  • Fearnley IM, Carroll J, Shannon RJ, Runswick MJ, Walker JE, Hirst J (2001) GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 276:38345–38348

    PubMed  CAS  Google Scholar 

  • Fearnley IM, Carroll J, Walker JE (2007) Proteomic analysis of the subunit composition of complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria. Methods Mol Biol 357:103–125

    PubMed  CAS  Google Scholar 

  • Fernandez-Moreira D, Ugalde C, Smeets R, Rodenburg RJ, Lopez-Laso E, Ruiz-Falco ML, Briones P, Martin MA, Smeitink JA, Arenas J (2007) X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Ann Neurol 61:73–83

    PubMed  CAS  Google Scholar 

  • Finel M, Skehel JM, Albracht SP, Fearnley IM, Walker JE (1992) Resolution of NADH:ubiquinone oxidoreductase from bovine heart mitochondria into two subcomplexes, one of which contains the redox centers of the enzyme. Biochemistry 31:11425–11434

    PubMed  CAS  Google Scholar 

  • Fontanesi F, Soto IC, Horn D, Barrientos A (2006) Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol 291:C1129–C1147

    PubMed  CAS  Google Scholar 

  • Friedrich T (1998) The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364:134–146

    PubMed  CAS  Google Scholar 

  • Friedrich T, Bottcher B (2004) The gross structure of the respiratory complex I: a Lego System. Biochim Biophys Acta 1608:1–9

    PubMed  CAS  Google Scholar 

  • Gabaldon T, Rainey D, Huynen MA (2005) Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol 348:857–870

    PubMed  CAS  Google Scholar 

  • Galante YM, Hatefi Y (1978) Resolution of complex I and isolation of NADH dehydrogenase and an iron–sulfur protein. Methods Enzymol 53:15–21

    PubMed  CAS  Google Scholar 

  • Gohre V, Ossenbuhl F, Crevecoeur M, Eichacker LA, Rochaix J-D (2006) One of Two Alb3 Proteins Is Essential for the Assembly of the Photosystems and for Cell Survival in Chlamydomonas. Plant Cell 18:1454–1466

    PubMed  CAS  Google Scholar 

  • González-Halphen D, Maslov D (2004) NADH-ubiquinone oxidoreductase activity in the kinetoplasts of the plant trypanosomatid Phytomonas serpens. Parasitol Res 92:341–346

    PubMed  Google Scholar 

  • Grad LI, Lemire BD (2004) Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum Mol Genet 13:303–314

    PubMed  CAS  Google Scholar 

  • Grad LI, Sayles LC, Lemire BD (2005) Introduction of an additional pathway for lactate oxidation in the treatment of lactic acidosis and mitochondrial dysfunction in Caenorhabditis elegans. Proc Natl Acad Sci USA 102:18367–18372

    PubMed  CAS  Google Scholar 

  • Grigorieff N (1998) Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J Mol Biol 277:1033–1046

    PubMed  CAS  Google Scholar 

  • Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10:190–198

    PubMed  CAS  Google Scholar 

  • Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2:1137–1150

    PubMed  CAS  Google Scholar 

  • Guenebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T (1998) Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 276:105–112

    PubMed  CAS  Google Scholar 

  • Guenebaut V, Vincentelli R, Mills D, Weiss H, Leonard KR (1997) Three-dimensional structure of NADH-dehydrogenase from Neurospora crassa by electron microscopy and conical tilt reconstruction. J Mol Biol 265:409–418

    PubMed  CAS  Google Scholar 

  • Harris EH (2001) CHLAMYDOMONAS AS A MODEL ORGANISM. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    PubMed  CAS  Google Scholar 

  • Heazlewood JL, Howell KA, Millar AH (2003) Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochim Biophys Acta 1604:159–169

    PubMed  CAS  Google Scholar 

  • Hinchliffe P, Carroll J, Sazanov LA (2006) Identification of a novel subunit of respiratory complex I from Thermus thermophilus. Biochemistry 45:4413–4420

    PubMed  CAS  Google Scholar 

  • Hinchliffe P, Sazanov LA (2005) Organization of iron–sulfur clusters in respiratory complex I. Science 309:771–774

    PubMed  CAS  Google Scholar 

  • Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604:135–150

    PubMed  CAS  Google Scholar 

  • Hofhaus G, Attardi G (1993) Lack of assembly of mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase and loss of enzyme activity in a human cell mutant lacking the mitochondrial ND4 gene product. EMBO J 12:3043–3048

    PubMed  CAS  Google Scholar 

  • Hofhaus G, Johns DR, Hurko O, Attardi G, Chomyn A (1996) respiration and growth defects in transmitochondrial cell lines carrying the 11778 mutation associated with Leber’s hereditary optic neuropathy. J Biol Chem 271:13155–13161

    PubMed  CAS  Google Scholar 

  • Hofhaus G, Weiss H, Leonard K (1991) Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (complex I). J Mol Biol 221:1027–1043

    PubMed  CAS  Google Scholar 

  • Horner DS, Foster PG, Embley TM (2000) Iron Hydrogenases and the Evolution of Anaerobic Eukaryotes. Mol Biol Evol 17:1695–1709

    PubMed  CAS  Google Scholar 

  • Hrdy I, Cammack R, Stopka P, Kulda J, Tachezy J (2005) Alternative pathway of metronidazole activation in Trichomonas vaginalis hydrogenosomes. Antimicrob Agents Chemother 49:5033–5036

    PubMed  CAS  Google Scholar 

  • Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Martin Embley T (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622

    PubMed  CAS  Google Scholar 

  • Jain M, Shrager J, Harris EH, Halbrook R, Grossman AR, Hauser C, Vallon O (2007) EST assembly supported by a draft genome sequence: an analysis of the Chlamydomonas reinhardtii transcriptome. Nucleic Acids Res 35:2074–2083

    PubMed  CAS  Google Scholar 

  • Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515

    PubMed  CAS  Google Scholar 

  • Joza N, Oudit GY, Brown D, Benit P, Kassiri Z, Vahsen N, Benoit L, Patel MM, Nowikovsky K, Vassault A, Backx PH, Wada T, Kroemer G, Rustin P, Penninger JM (2005) Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 25:10261–10272

    PubMed  CAS  Google Scholar 

  • Kao MC, Di Bernardo S, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, Yagi T (2005) Characterization of the membrane domain subunit NuoJ (ND6) of the NADH-quinone oxidoreductase from Escherichia coli by chromosomal DNA manipulation. Biochemistry 44:3562–3571

    PubMed  CAS  Google Scholar 

  • Kao MC, Di Bernardo S, Perego M, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2004) Functional roles of four conserved charged residues in the membrane domain subunit NuoA of the proton-translocating NADH-quinone oxidoreductase from Escherichia coli. J Biol Chem 279:32360–32366

    PubMed  CAS  Google Scholar 

  • Karp CM, Shukla MN, Buckley DJ, Buckley AR (2007) HRPAP20: a novel calmodulin-binding protein that increases breast cancer cell invasion. Oncogene 26:1780–1788

    PubMed  CAS  Google Scholar 

  • Karpova OV, Newton KJ (1999) A partially assembled complex I in NAD4-deficient mitochondria of maize. Plant J 17:511–521

    CAS  Google Scholar 

  • Kerscher S, Drose S, Zwicker K, Zickermann V, Brandt U (2002) Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I. Biochim Biophys Acta 1555:83–91

    PubMed  CAS  Google Scholar 

  • Kerscher S, Grgic L, Garofano A, Brandt U (2004) Application of the yeast Yarrowia lipolytica as a model to analyse human pathogenic mutations in mitochondrial complex I (NADH:ubiquinone oxidoreductase). Biochim Biophys Acta 1659:197–205

    PubMed  CAS  Google Scholar 

  • Kerscher S, Kashani-Poor N, Zwicker K, Zickermann V, Brandt U (2001a) Exploring the catalytic core of complex I by Yarrowia lipolytica yeast genetics. J Bioenerg Biomembr 33:187–196

    PubMed  CAS  Google Scholar 

  • Kerscher SJ, Eschemann A, Okun PM, Brandt U (2001b) External alternative NADH:ubiquinone oxidoreductase redirected to the internal face of the mitochondrial inner membrane rescues complex I deficiency in Yarrowia lipolytica. J Cell Sci 114:3915–3921

    PubMed  CAS  Google Scholar 

  • Kerscher SJ, Okun JG, Brandt U (1999) A single external enzyme confers alternative NADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J Cell Sci 112(Pt 14):2347–2354

    PubMed  CAS  Google Scholar 

  • Kiefer D, Kuhn A (2007) YidC as an essential and multifunctional component in membrane protein assembly. Int Rev Cytol 259:113–138

    Article  PubMed  CAS  Google Scholar 

  • Kirby DM, Crawford M, Cleary MA, Dahl HH, Dennett X, Thorburn DR (1999) Respiratory chain complex I deficiency: an underdiagnosed energy generation disorder. Neurology 52:1255–1264

    PubMed  CAS  Google Scholar 

  • Kuffner R, Rohr A, Schmiede A, Krull C, Schulte U (1998) Involvement of two novel chaperones in the assembly of mitochondrial NADH:Ubiquinone oxidoreductase (complex I). J Mol Biol 283:409–417

    PubMed  CAS  Google Scholar 

  • Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT (2007) Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 27:4228–4237

    PubMed  CAS  Google Scholar 

  • Lee B-h, Lee H, Xiong L, Zhu J-K (2002) A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14:1235–1251

    PubMed  CAS  Google Scholar 

  • Lezhneva L, Amann K, Meurer J (2004) The universally conserved HCF101 protein is involved in assembly of [4Fe-4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37:174–185

    PubMed  CAS  Google Scholar 

  • Li Y, D’Aurelio M, Deng J-H, Park J-S, Manfredi G, Hu P, Lu J, Bai Y (2007) an assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem 282:17557–17562

    PubMed  CAS  Google Scholar 

  • Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ, Triepels RH, Sengers RC, van den Heuvel LP (2000) Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum Mutat 15:123–134

    PubMed  CAS  Google Scholar 

  • Lu H, Cao X (2008) GRIM-19 is essential for maintenance of mitochondrial membrane potential. Mol. Biol. Cell:E07-07-0683

  • Lunardi J, Darrouzet E, Dupuis A, Issartel JP (1998) The nuoM arg368his mutation in NADH:ubiquinone oxidoreductase from Rhodobacter capsulatus: a model for the human nd4–11778 mtDNA mutation associated with Leber’s hereditary optic neuropathy. Biochim Biophys Acta 1407:114–124

    PubMed  CAS  Google Scholar 

  • Ma J, Peng L, Guo J, Lu Q, Lu C, Zhang L (2007) LPA2 is required for efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell 19:1980–1993

    PubMed  CAS  Google Scholar 

  • Maeda S-i, Badger MR, Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol Microbiol 43:425–435

    PubMed  CAS  Google Scholar 

  • Malfatti E, Bugiani M, Invernizzi F, de Souza CF-M, Farina L, Carrara F, Lamantea E, Antozzi C, Confalonieri P, Sanseverino MT, Giugliani R, Uziel G, Zeviani M (2007) Novel mutations of ND genes in complex I deficiency associated with mitochondrial encephalopathy. Brain:awm114

  • Maximo V, Lima J, Soares P, Silva A, Bento I, Sobrinho-Simoes M (2008) GRIM-19 in health and disease. Adv Anat Pathol 15:46–53

    PubMed  CAS  Google Scholar 

  • Melo AM, Bandeiras TM, Teixeira M (2004) New insights into type II NAD(P) H:quinone oxidoreductases. Microbiol Mol Biol Rev 68:603–616

    PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    PubMed  CAS  Google Scholar 

  • Meyer EH, Heazlewood JL, Millar AH (2007) Mitochondrial acyl carrier proteins in Arabidopsis thaliana are predominantly soluble matrix proteins and none can be confirmed as subunits of respiratory Complex I. Plant Mol Biol 64:319–327

    PubMed  CAS  Google Scholar 

  • Meyer EH, Taylor NL, Millar AH (2008) Resolving and identifying protein components of plant mitochondrial respiratory complexes using three dimensions of gel electrophoresis. J Proteome Res 7:786–794

    PubMed  CAS  Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, Foyer CH (2003) Control of Ascorbate Synthesis by Respiration and Its Implications for Stress Responses. Plant Physiol 133:443–447

    PubMed  CAS  Google Scholar 

  • Mueller EG (2006) Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2:185–194

    PubMed  CAS  Google Scholar 

  • Murray J, Zhang B, Taylor SW, Oglesbee D, Fahy E, Marusich MF, Ghosh SS, Capaldi RA (2003) The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification. J Biol Chem 278:13619–13622

    PubMed  CAS  Google Scholar 

  • Nakagawa N, Sakurai N (2006) A mutation in At-nMat1a, which encodes a nuclear gene having high similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana. Plant Cell Physiol 47:772–783

    PubMed  CAS  Google Scholar 

  • Nargang FE, Preuss M, Neupert W, Herrmann JM (2002) The Oxa1 protein forms a homooligomeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa. J Biol Chem 277:12846–12853

    PubMed  CAS  Google Scholar 

  • Nawathean P, Maslov DA (2000) The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas serpens. Curr Genet 38:95–103

    PubMed  CAS  Google Scholar 

  • Ogilvie I, Kennaway NG, Shoubridge EA (2005) A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 115:2784–2792

    PubMed  CAS  Google Scholar 

  • Ohnishi T (1998) Iron–sulfur clusters/semiquinones in Complex I. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1364:186–206

    Google Scholar 

  • Ossenbuhl F, Inaba-Sulpice M, Meurer J, Soll J, Eichacker LA (2006) The synechocystis sp PCC 6803 oxa1 homolog is essential for membrane integration of reaction center precursor protein pD1. Plant Cell 18:2236–2246

    PubMed  Google Scholar 

  • Palmisano G, Sardanelli AM, Signorile A, Papa S, Larsen MR (2007) The phosphorylation pattern of bovine heart complex I subunits. Proteomics 7:1575–1583

    PubMed  CAS  Google Scholar 

  • Panigrahi AK, Zikova A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ, Stuart KD (2008) Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics 7:534–545

    PubMed  CAS  Google Scholar 

  • Papa S (2002) The NDUFS4 nuclear gene of complex I of mitochondria and the cAMP cascade. Biochim Biophys Acta 1555:147–153

    PubMed  CAS  Google Scholar 

  • Papa S, Sardanelli AM, Cocco T, Speranza F, Scacco SC, Technikova-Dobrova Z (1996) The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett 379:299–301

    PubMed  CAS  Google Scholar 

  • Papa S, Scacco S, Sardanelli AM, Petruzzella V, Vergari R, Signorile A, Technikova-Dobrova Z (2002) Complex I and the cAMP cascade in human physiopathology. Biosci Rep 22:3–16

    PubMed  CAS  Google Scholar 

  • Parisi G, Perales M, Fornasari MS, Colaneri A, Gonzalez-Schain N, Gomez-Casati D, Zimmermann S, Brennicke A, Araya A, Ferry JG, Echave J, Zabaleta E (2004) Gamma carbonic anhydrases in plant mitochondria. Plant Mol Biol 55:193–207

    PubMed  CAS  Google Scholar 

  • Pätsi J, Kervinen M, Finel M, Hassinen IE (2008) Leber hereditary optic neuropathy mutations in the ND6 subunit of mitochondrial complex I affect ubiquinone reduction kinetics in a bacterial model of the enzyme. Biochem J 409:129–137

    PubMed  Google Scholar 

  • Peng G, Fritzsch G, Zickermann V, Schagger H, Mentele R, Lottspeich F, Bostina M, Radermacher M, Huber R, Stetter KO, Michel H (2003) Isolation, characterization and electron microscopic single particle analysis of the NADH:ubiquinone oxidoreductase (complex I) from the hyperthermophilic eubacterium Aquifex aeolicus. Biochemistry 42:3032–3039

    PubMed  CAS  Google Scholar 

  • Perales M, Eubel H, Heinemeyer J, Colaneri A, Zabaleta E, Braun HP (2005) Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis. J Mol Biol 350:263–277

    PubMed  CAS  Google Scholar 

  • Perales M, Parisi G, Fornasari MS, Colaneri A, Villarreal F, Gonzalez-Schain N, Echave J, Gomez-Casati D, Braun HP, Araya A, Zabaleta E (2004) Gamma carbonic anhydrase like complex interact with plant mitochondrial complex I. Plant Mol Biol 56:947–957

    PubMed  CAS  Google Scholar 

  • Peters K, Dudkina NV, Jansch L, Braun HP, Boekema EJ (2008) A structural investigation of complex I and I + III(2) supercomplex from Zea mays at 11–13 A resolution: assignment of the carbonic anhydrase domain and evidence for structural heterogeneity within complex I. Biochim Biophys Acta 1777(1):84–93

    PubMed  CAS  Google Scholar 

  • Piccoli C, Scacco S, Bellomo F, Signorile A, Iuso A, Boffoli D, Scrima R, Capitanio N, Papa S (2006) cAMP controls oxygen metabolism in mammalian cells. FEBS Lett 580:4539–4543

    PubMed  CAS  Google Scholar 

  • Pitkanen S, Feigenbaum A, Laframboise R, Robinson BH (1996) NADH-coenzyme Q reductase (complex I) deficiency: heterogeneity in phenotype and biochemical findings. J Inherit Metab Dis 19:675–686

    PubMed  CAS  Google Scholar 

  • Pla M, Mathieu C, De Paepe R, Chetrit P, Vedel F (1995) Deletion of the last two exons of the mitochondrial nad7 gene results in lack of the NAD7 polypeptide in a Nicotiana sylvestris CMS mutant. Mol Gen Genet 248:79–88

    PubMed  CAS  Google Scholar 

  • Plesofsky N, Gardner N, Videira A, Brambl R (2000) NADH dehydrogenase in Neurospora crassa contains myristic acid covalently linked to the ND5 subunit peptide. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research 1495:223–230

    Google Scholar 

  • Pocsfalvi G, Cuccurullo M, Schlosser G, Scacco S, Papa S, Malorni A (2007) Phosphorylation of B14.5a subunit from bovine heart complex I identified by titanium dioxide selective enrichment and shotgun proteomics. Mol Cell Proteomics 6:231–237

    PubMed  CAS  Google Scholar 

  • Prieur I, Lunardi J, Dupuis A (2001) Evidence for a quinone binding site close to the interface between NUOD and NUOB subunits of Complex I. Biochim Biophys Acta 1504:173–178

    PubMed  CAS  Google Scholar 

  • Qi X, Lewin AS, Hauswirth WW, Guy J (2003) Suppression of complex I gene expression induces optic neuropathy. Ann Neurol 53:198–205

    PubMed  CAS  Google Scholar 

  • Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J (2004) SOD2 gene transfer protects against optic neuropathy induced by deficiency of complex I. Ann Neurol 56:182–191

    PubMed  CAS  Google Scholar 

  • Rebeille F, Alban C, Bourguignon J, Ravanel S, Douce R (2007) The role of plant mitochondria in the biosynthesis of coenzymes. Photosynth Res 92:149–162

    PubMed  CAS  Google Scholar 

  • Reeves MB, Davies AA, McSharry BP, Wilkinson GW, Sinclair JH (2007) Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316:1345–1348

    PubMed  CAS  Google Scholar 

  • Reinders J, Wagner K, Zahedi RP, Stojanovski D, Eyrich B, van der Laan M, Rehling P, Sickmann A, Pfanner N, Meisinger C (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6:1896–1906

    PubMed  CAS  Google Scholar 

  • Remacle C, Baurain D, Cardol P, Matagne RF (2001a) Mutants of Chlamydomonas reinhardtii deficient in mitochondrial complex I: characterization of two mutations affecting the nd1 coding sequence. Genetics 158:1051–1060

    PubMed  CAS  Google Scholar 

  • Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci USA 103:4771–4776

    PubMed  CAS  Google Scholar 

  • Remacle C, Duby F, Cardol P, Matagne RF (2001b) Mutations inactivating mitochondrial genes in Chlamydomonas reinhardtii. Biochem Soc Trans 29:442–446

    PubMed  CAS  Google Scholar 

  • Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C, Kreuziger J, Baldi P, Wallace DC (2007) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucl Acids Res 35:D823–D828

    PubMed  CAS  Google Scholar 

  • Saada A, Edvardson S, Rapoport M, Shaag A, Amry K, Miller C, Lorberboum-Galski H, Elpeleg O (2008) C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 82:32–38

    PubMed  CAS  Google Scholar 

  • Sackmann U, Zensen R, Rohlen D, Jahnke U, Weiss H (1991) The acyl-carrier protein in Neurospora crassa mitochondria is a subunit of NADH:ubiquinone reductase (complex I). Eur J Biochem 200:463–469

    PubMed  CAS  Google Scholar 

  • Sardanelli AM, Technikova-Dobrova Z, Scacco SC, Speranza F, Papa S (1995) Characterization of proteins phosphorylated by the cAMP-dependent protein kinase of bovine heart mitochondria. FEBS Lett 377:470–474

    PubMed  CAS  Google Scholar 

  • Sazanov LA (2007) Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46:2275–2288

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Peak-Chew SY, Fearnley IM, Walker JE (2000) Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochemistry 39:7229–7235

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Walker JE (2000) Cryo-electron crystallography of two sub-complexes of bovine complex I reveals the relationship between the membrane and peripheral arms. J Mol Biol 302:455–464

    PubMed  CAS  Google Scholar 

  • Scacco S, Vergari R, Scarpulla RC, Technikova-Dobrova Z, Sardanelli A, Lambo R, Lorusso V, Papa S (2000) cAMP-dependent phosphorylation of the nuclear encoded 18-kDa (IP) subunit of respiratory complex I and activation of the complex in serum-starved mouse fibroblast cultures. J Biol Chem 275:17578–17582

    PubMed  CAS  Google Scholar 

  • Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159

    PubMed  CAS  Google Scholar 

  • Schagger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279:36349–36353

    PubMed  Google Scholar 

  • Scheffler IE, Yadava N, Potluri P (2004) Molecular genetics of complex I-deficient Chinese hamster cell lines. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1659:160–171

    Google Scholar 

  • Schilling B, Aggeler R, Schulenberg B, Murray J, Row RH, Capaldi RA, Gibson BW (2005) Mass spectrometric identification of a novel phosphorylation site in subunit NDUFA10 of bovine mitochondrial complex I. FEBS Lett 579:2485–2490

    PubMed  CAS  Google Scholar 

  • Schneider R, Massow M, Lisowsky T, Weiss H (1995) Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein. Curr Genet 29:10–17

    PubMed  CAS  Google Scholar 

  • Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49:69–84

    PubMed  CAS  Google Scholar 

  • Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278:27251–27255

    PubMed  CAS  Google Scholar 

  • Schuler F, Casida JE (2001) Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling. Biochim Biophys Acta 1506:79–87

    PubMed  CAS  Google Scholar 

  • Schuler F, Yano T, Di Bernardo S, Yagi T, Yankovskaya V, Singer TP, Casida JE (1999) NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron–sulfur cluster N2 to quinone. Proc Natl Acad Sci USA 96:4149–4153

    PubMed  CAS  Google Scholar 

  • Schulte U (2001) Biogenesis of respiratory complex I. J Bioenerg Biomembr 33:205–212

    PubMed  CAS  Google Scholar 

  • Schulte U, Fecke W, Krull C, Nehls U, Schmiede A, Schneider R, Ohnishi T, Weiss H (1994) In vivo dissection of the mitochondrial respiratory NADH: ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1187:121–124

    PubMed  CAS  Google Scholar 

  • Sellem CH, Lemaire C, Lorin S, Dujardin G, Sainsard-Chanet A (2005) Interaction between the oxa1 and rmp1 genes modulates respiratory complex assembly and life span in Podospora anserina. Genetics 169:1379–1389

    PubMed  CAS  Google Scholar 

  • Seo T, Lee D, Shim YS, Angell JE, Chidambaram NV, Kalvakolanu DV, Choe J (2002) Viral interferon regulatory factor 1 of Kaposi’s Sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. J Virol 76:8797–8807

    PubMed  CAS  Google Scholar 

  • Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–1912

    PubMed  Google Scholar 

  • Smeitink J, Sengers R, Trijbels F, van den Heuvel L (2001) Human NADH:ubiquinone oxidoreductase. J Bioenerg Biomembr 33:259–266

    PubMed  CAS  Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    PubMed  CAS  Google Scholar 

  • Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci USA 93:5253–5257

    PubMed  CAS  Google Scholar 

  • Stephens JL, Lee SH, Paul KS, Englund PT (2007) Mitochondrial fatty acid synthesis in Trypanosoma brucei. J Biol Chem 282:4427–4436

    PubMed  CAS  Google Scholar 

  • Stiburek L, Fornuskova D, Wenchich L, Pejznochova M, Hansikova H, Zeman J (2007) Knockdown of human Oxa1 l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase. J Mol Biol 374:506–516

    PubMed  CAS  Google Scholar 

  • Sunderhaus S, Dudkina NV, Jansch L, Klodmann J, Heinemeyer J, Perales M, Zabaleta E, Boekema EJ, Braun HP (2006) Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. J Biol Chem 281:6482–6488

    PubMed  CAS  Google Scholar 

  • Tocilescu MA, Fendel U, Zwicker K, Kerscher S, Brandt U (2007) Exploring the ubiquinone binding cavity of respiratory complex I. J Biol Chem 282:29514–29520

    PubMed  CAS  Google Scholar 

  • Touraine B, Boutin J-P, Marion-Poll A, Briat J-F, Peltier G, Lobreaux S (2004) Nfu2: a scaffold protein required for [4Fe-4S] and ferredoxin iron–sulphur cluster assembly in Arabidopsis chloroplasts. Plant J 40:101–111

    PubMed  CAS  Google Scholar 

  • Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA (2001) Respiratory chain complex I deficiency. Am J Med Genet 106:37–45

    PubMed  CAS  Google Scholar 

  • Tripp BC, Bell CB 3rd, Cruz F, Krebs C, Ferry JG (2004) A role for iron in an ancient carbonic anhydrase. J Biol Chem 279:6683–6687

    PubMed  CAS  Google Scholar 

  • Trounce IA, Pinkert CA (2007) Cybrid models of mtDNA disease and transmission, from cells to mice. Curr Top Dev Biol 77:157–183

    PubMed  CAS  Google Scholar 

  • Tsang WY, Sayles LC, Grad LI, Pilgrim DB, Lemire BD (2001) Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem 276:32240–32246

    PubMed  CAS  Google Scholar 

  • Tsuneoka M, Teye K, Arima N, Soejima M, Otera H, Ohashi K, Koga Y, Fujita H, Shirouzu K, Kimura H, Koda Y (2005) A novel Myc-target gene, mimitin, that is involved in cell proliferation of esophageal squamous cell carcinoma. J Biol Chem 280:19977–19985

    PubMed  CAS  Google Scholar 

  • Tuschen G, Sackmann U, Nehls U, Haiker H, Buse G, Weiss H (1990) Assembly of NADH: ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits. J Mol Biol 213:845–857

    PubMed  CAS  Google Scholar 

  • Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG (2004a) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13:659–667

    PubMed  CAS  Google Scholar 

  • Ugalde C, Vogel R, Huijbens R, Van Den Heuvel B, Smeitink J, Nijtmans L (2004b) Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies. Hum Mol Genet 13:2461–2472

    PubMed  CAS  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    PubMed  CAS  Google Scholar 

  • van Lis R, Atteia A, Mendoza-Hernandez G, Gonzalez-Halphen D (2003) Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol 132:318–330

    PubMed  Google Scholar 

  • Videira A, Duarte M (2002) From NADH to ubiquinone in Neurospora mitochondria. Biochim Biophys Acta 1555:187–191

    PubMed  CAS  Google Scholar 

  • Vogel R, Nijtmans L, Ugalde C, van den Heuvel L, Smeitink J (2004) Complex I assembly: a puzzling problem. Curr Opin Neurol 17:179–186

    PubMed  CAS  Google Scholar 

  • Vogel RO, Dieteren CE, van den Heuvel LP, Willems PH, Smeitink JA, Koopman WJ, Nijtmans LG (2007a) Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J Biol Chem 282:7582–7590

    PubMed  CAS  Google Scholar 

  • Vogel RO, Janssen RJ, Ugalde C, Grovenstein M, Huijbens RJ, Visch HJ, van den Heuvel LP, Willems PH, Zeviani M, Smeitink JA, Nijtmans LG (2005) Human mitochondrial complex I assembly is mediated by NDUFAF1. FEBS J 272:5317–5326

    PubMed  CAS  Google Scholar 

  • Vogel RO, Janssen RJRJ, van den Brand MAM, Dieteren CEJ, Verkaart S, Koopman WJH, Willems PHGM, Pluk W, van den Heuvel LPWJ, Smeitink JAM, Nijtmans LGJ (2007b) Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev 21:615–624

    PubMed  CAS  Google Scholar 

  • Vogel RO, Smeitink JAM, Nijtmans LGJ (2007c) Human mitochondrial complex I assembly: a dynamic and versatile process. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1767:1215–1227

    Google Scholar 

  • Vogel RO, van den Brand MAM, Rodenburg RJ, van den Heuvel LPWJ, Tsuneoka M, Smeitink JAM, Nijtmans LGJ (2007d) Investigation of the complex I assembly chaperones B17.2L and NDUFAF1 in a cohort of CI deficient patients. Mol Genet Metab 91:176–182

    PubMed  CAS  Google Scholar 

  • Yadava N, Scheffler IE (2004) Import and orientation of the MWFE protein in mitochondrial NADH-ubiquinone oxidoreductase. Mitochondrion 4:1–12

    PubMed  CAS  Google Scholar 

  • Yagi T, Matsuno-Yagi A (2003) The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42:2266–2274

    PubMed  CAS  Google Scholar 

  • Yano T, Sled VD, Ohnishi T, Yagi T (1996) Expression and characterization of the flavoprotein subcomplex composed of 50-kDa (NQO1) and 25-kDa (NQO2) subunits of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. J Biol Chem 271:5907–5913

    PubMed  CAS  Google Scholar 

  • Zee JM, Glerum DM (2006) Defects in cytochrome oxidase assembly in humans: lessons from yeast. Biochem Cell Biol 84:859–869

    PubMed  CAS  Google Scholar 

  • Zensen R, Husmann H, Schneider R, Peine T, Weiss H (1992) De novo synthesis and desaturation of fatty acids at the mitochondrial acyl-carrier protein, a subunit of NADH:ubiquinone oxidoreductase in Neurospora crassa. FEBS Lett 310:179–181

    PubMed  CAS  Google Scholar 

  • Zhang J, Yang J, Roy SK, Tininini S, Hu J, Bromberg JF, Poli V, Stark GR, Kalvakolanu DV (2003) The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci USA 100:9342–9347

    PubMed  CAS  Google Scholar 

  • Zickermann V, Barquera B, Wikstrom M, Finel M (1998) Analysis of the pathogenic human mitochondrial mutation ND1/3460, and mutations of strictly conserved residues in its vicinity, using the bacterium Paracoccus denitrificans. Biochemistry 37:11792–11796

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research projects in the authors’ laboratories are funded by a United Mitochondrial Disease Foundation research grant (P. H. and C. R.), grants 2.4582.05 and 1.5.255.08 from FNRS, Fonds Spéciaux pour la Recherche Universitaire (C. R.), and the College of Biological Sciences, the College of Medical and Public Health, and the Dorothy M. Davis Heart and Lung Institute at The Ohio State University (P. H.). P. H. also wishes to acknowledge the Institute of Mitochondrial Biology at The Ohio State University for intellectual support. C. R. was supported by a sabbatical grant from FNRS during her stay at Ohio State University (Summer 2006 and 2007). P. C. is a postdoctoral researcher from FNRS. The authors wish to thank Dr. Brett H. Graham for sharing unpublished results, Dr. Birgit Alber, Dr. Yeong-Reen Chen and Sara Cline for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claire Remacle or Patrice P. Hamel.

Additional information

Communicated by C. Dieckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remacle, C., Barbieri, M.R., Cardol, P. et al. Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process. Mol Genet Genomics 280, 93–110 (2008). https://doi.org/10.1007/s00438-008-0350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0350-5

Keywords

Navigation