Skip to main content
Log in

The complete mitochondrial genome of Pseudochauhanea macrorchis (Monogenea: Chauhaneidae) revealed a highly repetitive region and a gene rearrangement hot spot in Polyopisthocotylea

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The complete mitochondrial genome of Pseudochauhanea macrorchis was determined and compared with other monogenean mitochondrial genomes from GenBank. The circular genome was 15,031 bp in length and encoded 36 genes (12 protein-coding genes, two ribosomal RNAs, and 22 transfer RNAs) typically found in flatworms. Structures of the mitochondrial genome were mostly concordant with that known for Microcotyle sebastis and Polylabris halichoeres, but also contained two noted features—a gene rearrangement hot spot and the highly repetitive region (HRR) in major non-coding region (NCR). The gene rearrangement hot spot located between the cox3 and nad5 genes, including a cluster of tRNA genes, nad6 gene and one major NCR. The HRR seemed to be a unique feature of the polyopisthocotylean mitochondrial genomes. In conclusion, the present study provided new molecular data for future studies of the comparative mitochondrial genomics and also served as a resource of markers for the studies of species populations and monogenean phylogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Piganeau G, Gardner M, Eyre-Walker A (2004) A broad survey of recombination in animal mitochondria. Mol Biol Evol 21:2319–2325. doi:10.1093/molbev/msh244

    Article  PubMed  CAS  Google Scholar 

  2. Xia X (2005) Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene 345:13–20. doi:10.1016/j.gene.2004.11.019

    Article  PubMed  CAS  Google Scholar 

  3. Kamatani T, Yamamoto T (2007) Comparison of codon usage and tRNAs in mitochondrial genomes of Candida species. Biosystems 90:362–370. doi:10.1016/j.biosystems.2006.09.039

    Article  PubMed  CAS  Google Scholar 

  4. Boore JL, Macey JR, Medina M (2005) Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymol 395:311–348. doi:10.1016/S0076-6879(05)95019-2

    Article  PubMed  CAS  Google Scholar 

  5. Boore JL (2006) The use of genome-level characters for phylogenetic reconstruction. Trends Ecol Evol 21:439–446. doi:10.1016/j.tree.2006.05.009

    Article  PubMed  Google Scholar 

  6. Lei R, Shore GD, Brenneman RA, Engberg SE, Sitzmann BD, Bailey CA, Kimmel LM, Randriamampionona R, Ranaivoarisoa JF, Louis EE (2010) Complete sequence and gene organization of the mitochondrial genome for Hubbard’s sportive lemur (Lepilemur hubbardorum). Gene 464:44–49. doi:10.1016/j.gene.2010.06.001

    Article  PubMed  CAS  Google Scholar 

  7. Wei S, Shi M, He J, Sharkey M, Chen X (2009) The complete mitochondrial genome of Diadegma semiclausum (Hymenoptera: Ichneumonidae) indicates extensive independent evolutionary events. Genome 52:308–319. doi:10.1139/G09-008

    Article  PubMed  CAS  Google Scholar 

  8. Masta SE, Boore JL (2004) The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Mol Biol Evol 21:893–902. doi:10.1093/molbev/msh096

    Article  PubMed  CAS  Google Scholar 

  9. Dermauw W, Vanholme B, Tirry L, Leeuwen TV (2010) Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome. Genome 53:285–301. doi:10.1139/G10-004

    Article  PubMed  CAS  Google Scholar 

  10. Chen HX, Sundberg P, Wu HY, Sun SC (2010) The mitochondrial genomes of two nemerteans, Cephalothrix sp. (Nemertea: Palaeonemertea) and Paranemertes cf. peregrina (Nemertea: Hoplonemertea). Mol Biol Rep 38(7):4509–4525. doi:10.1007/s11033-010-0582-4

    Article  PubMed  Google Scholar 

  11. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120. doi:10.1016/S0305-1978(96)00042-7

    Article  Google Scholar 

  12. Boore JL (1999) Animal mitochondrial genomes. Nucl Acids Res 27:1767–1780. doi:10.1093/nar/27.8.1767

    Article  PubMed  CAS  Google Scholar 

  13. Kolpakov R, Bana G, Kucherov G (2003) Mreps: efficient and flexible detection of tandem repeats in DNA. Nucl Acids Res 31:3672–3678. doi:10.1093/nar/gkg617

    Article  PubMed  CAS  Google Scholar 

  14. Lukić-Bilela L, Brandt D, Pojskić N, Wiens M, Gamulin V, Müller WEG (2008) Mitochondrial genome of Suberites domuncula: palindromes and inverted repeats are abundant in non-coding regions. Gene 412:1–11. doi:10.1016/j.gene.2008.01.001

    Article  PubMed  Google Scholar 

  15. Le TH, Blair D, McManus DP (2002) Mitochondrial genomes of parasitic flatworms. Trends Parasitol 18(5):206–213. doi:10.1016/S1471-4922(02)02252-3

    Article  PubMed  CAS  Google Scholar 

  16. Bourlat SJ, Rota-Stabelli O, Lanfear R, Telford MJ (2009) The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida) is ancestral within the deuterostomes. BMC Evol Biol 9:107. doi:10.1186/1471-2148-9-107

    Article  PubMed  Google Scholar 

  17. Mjelle KA, Karlsen BO, Jorgensen TE, Moum T, Johansen SD (2008) Halibut mitochondrial genomes contain extensive heteroplasmic tandem repeat arrays involved in DNA recombination. BMC Genom 9:10. doi:10.1186/1471-2164-9-10

    Article  Google Scholar 

  18. Park JK, Kim KH, Kang S, Kim W, Eom KS, Littlewood DTJ (2007) A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of Microcotyle sebastis (Monogenea: Platyhelminthes). BMC Evol Biol 7:11. doi:10.1186/1471-2148-7-11

    Article  PubMed  Google Scholar 

  19. Littlewood DTJ, Lockyer AE, Webster BL, Johnston DA, Le TH (2006) The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol 39:452–467. doi:10.1016/j.ympev.2005.12.012

    Article  PubMed  CAS  Google Scholar 

  20. von Nickisch-Rosenegk M, Brown WM, Boore JL (2001) Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that platyhelminths are Eutrochozoans. Mol Biol Evol 18(5):721–730

    Article  Google Scholar 

  21. Shen X, Wang H, Ren J, Tian M, Wang M (2010) The mitochondrial genome of Euphausia superb (Prydz Bay) (Crustacea: Malacostraca: Euphausiacea) reveals a novel gene arrangement and potential molecular markers. Mol Biol Rep 37:771–784. doi:10.1007/s11033-009-9602-7

    Article  PubMed  CAS  Google Scholar 

  22. Webster BL, Mackenzie-Dodds JA, Telford MJ, Littlewood DTJ (2007) The mitochondrial genome of Priapulus caudatus Lamarck (Priapulida: Priapulidae). Gene 389:96–105. doi:10.1016/j.gene.2006.10.005

    Article  PubMed  CAS  Google Scholar 

  23. Zhang JY, Qiu ZZ, Ding XJ (1999) Parasites and parasitic diseases of fishes. Science Press, Beijing (In Chinese)

    Google Scholar 

  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  PubMed  CAS  Google Scholar 

  25. Lowe T, Eddy S (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25:955–964. doi:10.1093/nar/25.5.0955

    PubMed  CAS  Google Scholar 

  26. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res 27:573–580. doi:10.1093/nar/27.2.573

    Article  PubMed  CAS  Google Scholar 

  27. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539. doi:10.1093/bioinformatics/bti054

    Article  PubMed  CAS  Google Scholar 

  28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  29. Wang S, Lei Z, Wang H, Dong B, Ren B (2011) The complete mitochondrial genome of the leafminer Liriomyza trifolii (Diptera: Agromyzidae). Mol Biol Rep 38:687–692. doi:10.1007/s11033-010-0155-6

    Article  PubMed  CAS  Google Scholar 

  30. Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496–503. doi:10.1016/S0169-5347(00)01994-7

    Article  PubMed  Google Scholar 

  31. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216. doi:10.1016/S0074-7696(08)62066-5

    Article  PubMed  CAS  Google Scholar 

  32. Zhang J, Wu XY, Xie MQ, Xu XD, Li AX (2011) The mitochondrial genome of Polylabris halichoeres (Monogenea: Microcotylidae). Mitochondr DNA 22:3–5. doi:10.3109/19401736.2011.588223

    Article  CAS  Google Scholar 

  33. Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8:668–674. doi:10.1016/S0959-437X(98)80035-X

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (grant No. 30871934) and Key Projects in the National Science & Technology Pillar Program (grant No. 2007BAD29B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anxing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wu, X., Xie, M. et al. The complete mitochondrial genome of Pseudochauhanea macrorchis (Monogenea: Chauhaneidae) revealed a highly repetitive region and a gene rearrangement hot spot in Polyopisthocotylea. Mol Biol Rep 39, 8115–8125 (2012). https://doi.org/10.1007/s11033-012-1659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1659-z

Keywords

Navigation