Skip to main content
Log in

Quercetin attenuates lindane induced oxidative stress in wistar rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A wide number of pesticides, including highly persistent organochlorine compounds, such as lindane (γ-Hexachlorocyclohexane), have deteriorative effect on fauna and flora by inducing oxidative stress. Lindane induces cell damage by producing free radicals and reactive oxygen species. Quercetin, a dietary flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. In this study the flavonoid quercetin was used to investigate its antioxidative effect against lindane induced oxidative stress in rats. The level of lipid peroxidation, reduced glutathione (GSH) were analysed in addition to the antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione-s-transferase (GST) activities in the liver and kidney tissue. Levels of hepatic marker enzymes in serum like Aspartate transaminase (AST), Alanine transaminase (ALT), Alkaline phosphatase (ALP) and Lactate dehydrogenase (LDH) and renal markers like serum creatinine and serum urea were estimated. Administration of Lindane induced histopathological alterations and increased levels of serum hepatic and renal markers and malondialdehyde (MDA) with a significant decrease in GSH content and CAT, SOD, GPx and GST activities. Cotreatment of quercetin along with lindane significantly decreased the lindane induced alteration in histology, serum hepatic and renal markers and MDA and also improved the cellular antioxidant status. The results show that Quercetin ameliorates Lindane induced oxidative stress in liver and kidney. The quercetin exhibited chemopreventive effect when administered along with lindane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

ALT:

Alanine transaminase

ANOVA:

Analysis of variance

AST:

Aspartate transaminase

CAT:

Catalase

CPCSEA:

Committee for the purpose of control and supervision of experiments and animals

GPx:

Glutathione peroxidase

GSH:

Reduced glutathione

GST:

Glutathione-s-transferase

H&E:

Hematoxylin and eosin

LDH:

Lactate dehydrogenase

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARS:

Thio barbituric acid reactive substances

References

  1. Donald DB, Block H, Wood J (1997) Role of ground water on hexachlorocyclohexane (lindane) detections in surface water in western Canada. Environ Toxicol Chem 16(9):1867–1872

    Article  CAS  Google Scholar 

  2. Bintein S, Devillers J (1996) Evaluating the environmental fate of lindane in France. Chemosphere 32(12):2427–2440

    Article  CAS  Google Scholar 

  3. Sang S, Petrovic S, Cuddeford V (1999) Lindane—a review of toxicity and environmental fate. World Wildl Fund Can 1–72

  4. Piskac-Collier AL, Smith MA (2009) Lindane-induced generation of reactive oxygen species and depletion of glutathione do not result in necrosis in renal distal tubule cells. J Toxicol Environ Health Part A 72:1160–1167

    Article  PubMed  CAS  Google Scholar 

  5. Banerjee BD, Seth V, Bhattacharya A, Pasha ST, Chakraborty AK (1999) Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol Lett 107(1–3):33–47

    Article  PubMed  CAS  Google Scholar 

  6. Barros SB, Simizu K, Junqueira VB (1991) Liver lipid peroxidation-related parameters after short-term administration of hexachlorocyclohexane isomers to rats. Toxicol Lett 56(1–2):137–144

    Article  PubMed  CAS  Google Scholar 

  7. Bano M, Bhatt DK (2007) Neuroprotective role of a novel combination of certain antioxidants on lindane (g-HCH) induced toxicity in cerebrum in mice. Res J Agric Biol Sci 3(6):664–669

    CAS  Google Scholar 

  8. Andrews JE, Gray LE (1990) The effects of lindane and linuron on calcium metabolism, bone morphometry and the kidney in rats. Toxicology 60(1–2):99–107

    Article  PubMed  CAS  Google Scholar 

  9. Abdollahi M, Ranjbar A, Shadnia Sh, Nikfar Sh, Rezaie A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10:141–147

    Google Scholar 

  10. Daryani NE, Keramati MR, Daryani E (2008) Lindane-induced hepatotoxicity in human?: report of a rare case. Govaresh 13(1):58–59

    Google Scholar 

  11. Anilakumar KR, Saritha V, Khanum F, Bawa AS (2009) Ameliorative effect of ajwain extract on hexachlorocyclohexane induced lipid peroxidation in rat liver. Food Chem Toxicol 47:279–282

    Article  PubMed  CAS  Google Scholar 

  12. Husain SR, Cillard J, Cillard P (1987) Hydroxy radical scavenging activity of flavonoids. Phytochemistry 26(9):2489–2491

    Article  CAS  Google Scholar 

  13. Osawa T, Katsuzaki H, Hagiwara Y, Hagiwara H, Shibamoto T (1992) A novel antioxidant isolated from young green barley leaves. J Agric Food Chem 40(7):1135–1138

    Article  CAS  Google Scholar 

  14. Ohnishi M, Morishita H, Iwahashi H, Toda S, Shirataki Y, Kimura M, Kido R (1994) Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 36(3):579–583

    Article  CAS  Google Scholar 

  15. Duthie SJ, Collins AR, Duthie GG, Dobson VL (1997) Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Mutat Res 393(3):223–231

    PubMed  CAS  Google Scholar 

  16. Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song JS, Lee YH, Jin C, Lee YS, Cho J (2003) Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res 965(1–2):130–136

    Article  PubMed  CAS  Google Scholar 

  17. Ioku K, Tsushida T, Takei Y, Nakatani N, Terao J (1995) Antioxidative activity of quercetin and quercetin monoglucosides in solution and phospholipid bilayers. Biochim Biophys Acta 1234(1):99–104

    Article  PubMed  Google Scholar 

  18. Kefalas P, Kallithraka S, Parejo I, Makris DP (2003) Note: a comparative study on the in vitro antiradical activity and hydroxyl free radical scavenging activity in aged red wines. Food Sci Technol Int 9(6):383–387

    Article  CAS  Google Scholar 

  19. Renugadevi J, MiltonPrabu S (2009) Ameliorative effect of quercetin against cadmium induced toxicity in liver of Wistar rats. J Cell Tissue Res 9:1665–1672

    CAS  Google Scholar 

  20. Morales AI, Vicente-Sanchez C, Santiago Sandoval JM, Egido J, Mayoral P, Arevalo M, Fernandez-Tagarro M, Lopez-Novoa JMF, Perez-Barriocanal F (2006) Protective effect of quercetin on experimental chronic cadmium nephrotoxicity in rats is based on its antioxidant properties. Food Chem Toxicol 44:2092–2100

    Article  PubMed  CAS  Google Scholar 

  21. Filipe P, Haigle J, Silva JN, Freitas J, Fernandes A, Mazière JC, Mazière C, Santus R, Morlière P (2004) Anti- and pro-oxidant effects of quercetin in copper-induced low density lipoprotein oxidation: quercetin as an effective antioxidant against pro-oxidant effects of urate. Eur J Biochem 271:1991–1999

    Article  PubMed  CAS  Google Scholar 

  22. Samanta L, Chainy GB (1997) Comparison of hexachlorocyclohexane-induced oxidative stress in the testis of immature and adult rats. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 118:319–327

    Article  CAS  Google Scholar 

  23. Sujatha R, Chitra KC, Latchoumycandane C, Mathur PP (2001) Effect of lindane on testicular antioxidant system and steroidogenic enzymes in adult rats. Asian J Androl 3:135–138

    PubMed  CAS  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  25. Natelson S, Scott ML, Beffa C (1951) A rapid method for the estimation of urea in biological fluids. Am J Clin Pathol 21(3):275–281

    PubMed  CAS  Google Scholar 

  26. Brod J, Sirota JH (1948) The renal clearance of endogenous creatinine in man. J Clin Invest 27(5):645–654

    Article  CAS  Google Scholar 

  27. Bergmeyer HU, Bernt E, Mollering H, Pfleiderer G (1974) l-aspartate and l-asparagine. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 4. Academic Press, Inc., New York, pp 1696–1700

    Google Scholar 

  28. Lowry OH, Robertson NR, Wu ML, Hixon WS, Crawfold EJ (1954) The quantivetative histochemistry of brain II enzyme measurements. J Biol Chem 207:19–37

    PubMed  CAS  Google Scholar 

  29. King J (1965) In: Van D (ed) Practical clinical enzymology, pp 83–93

  30. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  PubMed  CAS  Google Scholar 

  31. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  PubMed  CAS  Google Scholar 

  32. Takahara S, Hamilton HB, Neel JV, Kobara TY, Ogura Y, Nishimura ET (1960) Hypocatalasemia: a new genetic carrier state. J Clin Invest 39:610–619

    Article  PubMed  CAS  Google Scholar 

  33. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590

    Article  PubMed  CAS  Google Scholar 

  34. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    PubMed  CAS  Google Scholar 

  35. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582(1):67–78

    Article  PubMed  CAS  Google Scholar 

  36. Xavier R, Rekha K, Bairy KL (2004) Health perspective of pesticide exposure and dietary management. Malays J Nutr 10:39–51

    Google Scholar 

  37. Dorai T, Aggarwal BB (2004) Role of chemopreventive agents in cancer therapy. Cancer Lett 215:129–140

    Article  PubMed  CAS  Google Scholar 

  38. Ferraresi R, Troiano L, Roat E, Lugli E, Nemes E, Nasi M, Pinti M, Fernandez MI, Cooper EL, Cossarizza A (2005) Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radic Res 39:1249–1258

    Article  PubMed  CAS  Google Scholar 

  39. Smith AG (1991) Chlorinated hydrocarbon insecticides. In: Hayes WJ Jr, Laws ER Jr (eds) Handbook of pesticide toxicology. Academic Press, Inc., New York, pp 3–6

    Google Scholar 

  40. Etim OE, Farombi EO, Usoh IF, Akpan EJ (2006) The protective effect of aloe vera juice on Lindane induced hepatotoxicity and Genotoxicity. Pak J Pharm Sci 19(4):333–337

    Google Scholar 

  41. Galisteo M, García-Saura MF, Jiménez R, Villar IC, Zarzuelo A, Vargas F, Duarte J (2004) Effects of chronic quercetin treatment on antioxidant defence system and oxidative status of deoxycorticosterone acetate-salt-hypertensive rats. Mol Cell Biochem 259:91–99

    Article  PubMed  CAS  Google Scholar 

  42. García-Saura MF, Galisteo M, Villar IC, Bermejo A, Zarzuelo A, Vargas F, Duarte J (2005) Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Chem Biochem 270:147–155

    Article  Google Scholar 

  43. Suter P (1983) Three months toxicity study in rats with lindane. Research and consulting company AG, Itingen, Switzerland RCC project no. 005220

  44. Renugadevi J, MiltonPrabu S (2010) Quercetin protects against oxidative stress-related renal dysfunction by cadmium in rats. Exp Toxicol Pathol 62:471–481

    Article  PubMed  CAS  Google Scholar 

  45. Rajesh MG, Latha MS (2004) Preliminary evaluations of the antihepatotoxic effect of Kamilari, a polyherbal formulation. J Ethnopharmacol 91:99–104

    Article  PubMed  CAS  Google Scholar 

  46. Videla LA, Troncoso P, Arisi ACM, Junqueira VBC (1997) Dose-dependent effects of acute lindane treatment on Kupffer cell function assessed in the isolated perfused rat liver. Xenobiotica 27:745–757

    Google Scholar 

  47. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38(10):1933–1953

    PubMed  CAS  Google Scholar 

  48. Newman DJ, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO, Price CP (1995) Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int 47(1):312–318

    Article  PubMed  CAS  Google Scholar 

  49. Katz D, Mazor D, Dvilansky A, Meyerstein N (1996) Effect of radiation on red cell membrane and intracellular oxidative defense systems. Free Radic Res 24(3):199–204

    Article  PubMed  CAS  Google Scholar 

  50. Enginar H, Avci G, Eryavuz A, Kaya E, Kucukkurt I, Fidan AF (2006) Effect of Yucca schidigera extract on lipid peroxidation and antioxidant activity in rabbits exposed to γ-radiation. Revue Med Vet 157:415–417

    Google Scholar 

  51. Sahoo A, Samanta L, Chainy GBN (2000) Mediation of oxidative stress in HCH-induced neurotoxicity in rat. Arch Environ Contam Toxicol 39:7–12

    Article  PubMed  CAS  Google Scholar 

  52. Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic Biol Med 22(5):861–870

    Article  PubMed  CAS  Google Scholar 

  53. Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11:733–740

    Article  PubMed  CAS  Google Scholar 

  54. Coskun O, Kanter M, Ahmetkorkmaz A, Sukruoter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res 51:117–123

    Article  PubMed  CAS  Google Scholar 

  55. Fidan AF, Cigeri IH, Baysu-Sozbilir N, Kucukkurt I, Yuksel H, Keles H (2008) The effect of the dose-dependent γ-Hexachlorocyclohexane (lindane) on blood and tissue antioxidant defence systems, lipid peroxidation and histopathological changes in rats. J Anim Vet Adv 7:1480–1488

    CAS  Google Scholar 

  56. Anilakumar KR, Khanum F (2009) Effect of bee wax polyphenols on hexocyclohexane-induced oxidative stress in rat liver. Int J Integ Biol 7(3):156–159

    CAS  Google Scholar 

  57. Johri A, Dhawan A, Singh RL, Parmar D (2008) Persistence in alterations in the ontogeny of cerebral and hepatic cytochrome P450s following prenatal exposure to low doses of lindane. Toxicol Sci 101:331–340

    Article  PubMed  CAS  Google Scholar 

  58. Kaneno T, Baba N (1999) Protective effect of flavonoids on endothelial cells against linoleic acid hydroperoxide-induced toxicity. Biosci Biotechnol Biochem 63(2):323–328

    Article  Google Scholar 

  59. Chatuphonprasert W, Kondo S, Jarukamjorn K, Kawasaki Y, Sakuma T, Nemoto N (2010) Potent modification of inducible CYP1A1 expression by flavonoids. Biol Pharm Bull 33(10):1698–1703

    Article  PubMed  CAS  Google Scholar 

  60. Boots AW, Kubben N, Haenen GR, Bast A (2003) Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin supplementation. Biochem Biophys Res Commun 308:560–565

    Article  PubMed  CAS  Google Scholar 

  61. Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F (1995) Flavonoids as antioxidant agents: Importance of their interaction with biomembranes. Free Radic Biol Med 19:481–486

    Article  PubMed  CAS  Google Scholar 

  62. Moridani MY, Pourahmad J, Bui H, Siraki A, O’Brien PJ (2003) Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radic Biol Med 34:243–253

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanadha Vijaya Padma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padma, V.V., Baskaran, R., Roopesh, R.S. et al. Quercetin attenuates lindane induced oxidative stress in wistar rats. Mol Biol Rep 39, 6895–6905 (2012). https://doi.org/10.1007/s11033-012-1516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1516-0

Keywords

Navigation