Skip to main content
Log in

Effects of chronic quercetin treatment in experimental renovascular hypertension

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aims of the present study were to analyse the effects of an oral daily dose (10 mg/kg) of the dietary flavonoid quercetin for five weeks in two-kidney, one-clip (2K1C) Goldblatt (GB) hypertensive rats. The evolution of systolic blood pressure was followed by weekly measurements, and morphological variables, proteinuria, plasma nitrates plus nitrites (NO x ) and thiobarbituric acid reactive substances (TBARS), liver oxidative stress markers and endothelial function were determined at the end of the experimental period. Quercetin treatment reduced systolic blood pressure of GB rats, producing no effect in control animals. It also reduced cardiac hypertrophy and proteinuria developed in GB hypertensive rats. Decreased endothelium-dependent relaxation to acetylcholine of aortic rings from GB rats was improved by chronic quercetin treatment, as well as increased endothelium-dependent vasoconstrictor response to acetylcholine and overproduction of TXB2 by aortic vessels of GB rats, being without effect in normotensive animals. Increased plasma NO x and TBARS, and decreased liver total glutathione (GSH) levels and glutathione peroxidase (GPX) activity were observed in GB hypertensive rats compared to the control animals. Normalisation of plasma NO x and TBARS concentrations and improvement of the antioxidant defences system in liver accompanied the antihypertensive effect of quercetin. We conclude that chronic oral treatment with quercetin shows both antihypertensive and antioxidant effects in this model of renovascular hypertension. (Mol Cell Biochem 270: 147–155, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Textor SC, Wilcox CS: Renal artery stenosis: A common, treatable cause of renal failure? Annu Rev Med 52: 421–442, 2001

    Google Scholar 

  2. Goldblatt H, Lynch J, Hanzal RF, Summerville WW: Studies of experimental hypertension. I. Production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59: 347–378, 1934

    Google Scholar 

  3. Lerman LO, Nath KA, Rodriguez-Porcel M, Krier JD, Schwartz RS, Napoli C, Romero JC: Increased oxidative stress in experimental renovascular hypertension. Hypertension 37: 541–546, 2001

    Google Scholar 

  4. Minuz P, Patrignani P, Gaino S, Degan M, Menapace L, Tommasoli R, Seta F, Capone ML, Tacconelli S, Palatresi S, Bencini C, Del Vecchio C, Mansueto G, Arosio E, Santonastaso CL, Lechi A, Morganti A, Patrono C: Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation 106: 2800–2805, 2002

    Article  CAS  PubMed  Google Scholar 

  5. Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K: Endothelial function and oxidative stress in renovascular hypertension. New Engl J Med 346: 1954–1962, 2002

    Google Scholar 

  6. Welch WJ, Mendonca M, Aslam S, Wilcox CS: Roles of oxidative stress and AT1 receptors in renal hemodynamics and oxygenation in the postclipped 2K,1C kidney. Hypertension 41: 692–696, 2003

    Article  CAS  PubMed  Google Scholar 

  7. Braam B, Navar LG, Mitchell KD: Modulation of tubuloglomerular feedback by angiotensin II type 1 receptors during the development of Goldblatt hypertension. Hypertension 25: 1232–1237, 1995

    Google Scholar 

  8. Amiri F, García R: Renal angiotensin II receptor regulation in two-kidney, one clip hypertensive rats: Effect of ACE inhibition. Hypertension 30: 337–344, 1997

    Google Scholar 

  9. Kobayashi S, Ishida A, Moriya H, Mori N, Fukuda T, Takamura T: Angiotensin II receptor blockade limits kidney infury in two-kidney, one-clip Goldblatt hypertensive rats with special reference to phenotypic changes. J Lab Clin Med 133: 134–143, 1999

    Google Scholar 

  10. Hocher B, Godes M, Olivier J, Weil J, Eschenhagen T, Slowinski T, Neumayer HH, Bauer C, Paul M, Pinto YM: Inhibition of left ventricular fibrosis by tranilast in rats with renovascular hypertension. J Hypertens 20: 745–751, 2002

    Google Scholar 

  11. Chade AR, Krier JD, Rodriguez-Porcel M, Breen JF, McKusick MA, Lerman A, Lerman LO: Comparison of acute and chronic antioxidant interventions in experimental renovascular disease. Am J Physiol Renal Physiol 286: F1079–F1086, 2004

    Google Scholar 

  12. Rodriguez-Porcel M, Herrman J, Chade AR, Krier JD, Breen JF, Lerman A, Lerman LO: Long-term antioxidant intervention improves myocardial microvascular function in experimental hypertension. Hypertension 43: 493–498, 2004

    Google Scholar 

  13. Duarte J, Pérez-Palencia R, Vargas F, Ocete MA, Pérez-Vizcaino F, Zarzuelo A, Tamargo J: Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 133: 117–124, 2001

    Google Scholar 

  14. Duarte J, Galisteo M, Ocete MA, Pérez-Vizcaíno F, Zarzuelo A, Tamargo J: Effects of chronic quercetin treatment on hepatic oxidative status of spontaneously hypertensive rats. Mol Cell Biochem 221: 155–160, 2001

    Google Scholar 

  15. Duarte J, Jiménez R, O’Valle F, Galisteo M, Pérez-Palencia R, Vargas F, Pérez-Vizcaíno F, Zarzuelo A, Tamargo J: Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats. J Hypertens 20: 1843–1854, 2002

    Google Scholar 

  16. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Article  CAS  PubMed  Google Scholar 

  17. Anderson ME: Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113: 548–555, 1985

    Google Scholar 

  18. Jiménez R, Andriambeloson E, Duarte J, Andriantsitohaina R, Jiménez J, Pérez-Vizcaino F, Zarzuelo A, Tamargo J: Involvement of thromboxane A2 in the endothelium-dependent contractions induced by myricetin in rat isolated aorta. Br J Pharmacol 127: 1539–1544, 1999

    Google Scholar 

  19. Wille PR, Ribeiro-do-Valle RM, Simoes CM, Gabilan NH, Nicolau M: Effect of quercetin on tachykinin-induced plasma extravasation in rat urinary bladder. Phytother Res 15: 444–446, 2001

    Google Scholar 

  20. Cyrino LA, Cardoso RC, Hackl LP, Nicolau M: Effect of quercetin on plasma extravasation in rat CNS and duramater by ACE and NEP inhibition. Phytother Res 16: 545–549, 2002

    Google Scholar 

  21. Galisteo M, García-Saura MF, Jiménez R, Villar IC, Wangensteen R, Zarzuelo A, Vargas F, Duarte J: Effects of quercetin treatment on vascular function in deoxycorticosterone acetate-salt hypertensive rats. Comparative study with verapamil. Planta Med 2004

  22. Galisteo M, García-Saura MF, Jimenez R, Villar IC, Zarzuelo A, Vargas F, Duarte J: Effects of chronic quercetin treatment on antioxidant defence system and oxidative status of deoxycorticosterone acetate-salt-hypertensive rats. Mol Cell Biochem 259: 91–99, 2004

    Google Scholar 

  23. Aoi W, Niisato N, Miyazaki H, Marunaka Y: Flavonoid-induced reduction of ENaC expression in the kidney of Dahl salt-sensitive hypertensive rat. Biochem Biophys Res Commun 315: 892–896, 2004

    Google Scholar 

  24. Gavras H, Brunner HR, Larga JH, Vaughan ED Jr, Koss M, Cote LJ, Gavras I: Malignant hypertension resulting from deoxycorticosterone acetate and salt excess: Role of renin and sodium in vascular changes. Circ Res 36: 300–309, 1975

    Google Scholar 

  25. Weinberger MH: Sodium sensitivity of blood pressure. Curr Opin Nephrol Hypertens 2: 935–939, 1993

    Google Scholar 

  26. Alcocer F, Whitley D, Salazar-Gonzalez JF, Jordan WD, Sellers MT, Eckhoff DE, Suzuki K, Macrae C, Bland KI: Quercetin inhibits human vascular smooth muscle cell proliferation and migration. Surgery 131: 198–204, 2002

    Google Scholar 

  27. Yoshizumi M, Tsuchiya K, Suzaki Y, Kirima K, Kyaw M, Moon JH, Terao J, Tamaki T: Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1 signaling pathway. Biochem Biophys Res Commun 293: 1458–1465, 2002

    Google Scholar 

  28. Moon SK, Cho GO, Jung SY, Gal SW, Kwon TK, Lee YC, Madamanchi NR, Kim CH: Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: Role of ERK1/2, cell-cycle regulation, and matrix metalloproteinase-9. Biochem Biophys Res Commun 301: 1069–1078, 2003

    Article  CAS  PubMed  Google Scholar 

  29. Qin TC, Chen L, Yu LX, Gu ZL: Inhibitory effect of quercetin on cultured neonatal rat cardiomyocytes hypertrophy induced by angiotensin. Acta Pharmacol Sin 22: 1103–1106, 2001

    Google Scholar 

  30. Wang C, Wang HY, Yuan ZK, Zhao XN, Wang X, Zhang ZX: Quercetin decreased heart rate and cardiomyocyte Ca2+ oscillation frequency in rats and prevented cardiac hypertrophy in mice. Zhongguo Yao Li Xue Bao 20: 426–430, 1999

    Google Scholar 

  31. Ortenberg JM, Cook AK, Inscho EW, Carmines PK: Attenuated afferent arteriolar response to acetylcholine in hypertension. Hypertension 19: 785–789, 1992

    Google Scholar 

  32. Bennett MA, Thurston H: Effect of angiotensin-converting enzyme inhibitors on resistance artery structure and endothelium-dependent relaxation in two-kidney, one-clip Goldblatt hypertensive and sham-operated rats. Clin Sci (London) 90: 21–29, 1996

    Google Scholar 

  33. Peach MJ, Loeb AL: Changes in vascular endothelium and its function in systemic arterial hypertension. Am J Cardiol 60: 110I–115I, 1987

    Google Scholar 

  34. Nava E, Farre AL, Moreno C, Casado S, Moreau P, Cosentino F, Luscher TF: Alterations to the nitric oxide patway in the spontaneously hypertensive rat. J Hypertens 16: 609–615, 1998

    Google Scholar 

  35. Wu CC, Yen MH: Higher level of plasma nitric oxide in spontaneously hypertensive rats. Am J Hypertens 12: 476–482, 1999

    Google Scholar 

  36. Hong KJ, Loh SH, Yen MH: Suppression of the development of hypertension by the inhibitor of inducible nitric oxide synthase. Br J Pharmacol 131: 631–637, 2000

    Google Scholar 

  37. Adcock IM, Brown CR, Kwon O, Barnes PJ: Oxidative stress induces NFκB DNA binding and inducible NOS mRNA in human epithelial cells. Biochem Biophys Res Commun 199: 1518–1524, 1994

    Google Scholar 

  38. López-López G, Moreno L, Cogolludo A, Galisteo M, Ibarra M, Duarte J, Lodi F, Tamargo J, Perez-Vizcaino F: Nitric oxide (NO) scavenging and NO protecting effects of quercetin and their biological significance in vascular smooth muscle. Mol Pharmacol 65: 851–859, 2004

    Google Scholar 

  39. Yuan YV, Kitts DD, Godin DV: Variations in dietary fat and cholesterol intakes modify antioxidant status of SHR and WKY rats. J Nutr 128: 1620–1630, 1998

    Google Scholar 

  40. Galati G, Moridani MY, Chan TS, O’Brien PJ: Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: Glutathione oxidation and conjugation. Free Radic Biol Med 30: 370–382, 2001

    Google Scholar 

  41. Selloum L, Reichl S, Müller M, Sebihi L, Arnhold J: Effects of flavonols on the generation of superoxide anion radicals by xanthine oxidase and stimulated neutrophils. Arch Biochem Biophys 395: 49–56, 2001

    Google Scholar 

  42. Hanasaki Y, Ogawa S, Fukui S: The correlation between active oxygen scavenging and antioxidative effects of flavonoids. Free Radical Biol Med 16: 845–850, 1994

    Google Scholar 

  43. Manach C, Morand C, Crespy V, Demigné C, Texier O, Régérat F, Rémésy C: Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett 426: 331–336, 1998

    Article  Google Scholar 

  44. Carvalho MH, Fortes ZB, Nigro D, Oliveira MA, Scivoletto R: The role of thromboxane A2 in the altered microvascular reactivity in two-kidney, one-clip hypertension. Endothelium 5: 167–178, 1997

    Google Scholar 

  45. Himmelstein SI, Klotman PE: The role of thromboxane in two-kidney, one-clip Goldblatt hypertension in rats. Am J Physiol 257: F190–F196, 1989

    Google Scholar 

  46. Boussairi EH, Sacquet J, Sassard J, Benzoni D: Thromboxane A2-prostaglandin H2 and renovascular hypertension in rats. Am J Physiol 267: R1190–R1197, 1994

    Google Scholar 

  47. Wilcox CS, Cardozo J, Welch WJ: AT1 and TxA2/PGH2 receptors maintain hypertension throughout 2K, 1C Goldblatt hypertension in the rat. Am J Physiol 271: R891–R896, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milagros Galisteo.

Additional information

M.F. García-Saura and M. Galisteo are equal contributors to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Saura, M.F., Galisteo, M., Villar, I.C. et al. Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem 270, 147–155 (2005). https://doi.org/10.1007/s11010-005-4503-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-4503-0

Key words

Navigation