Skip to main content
Log in

Maize ZmMEK1 is a single-copy gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinase (MAPK) cascade constitutes a conserved signaling module in eukaryotes. MAPK kinase (MAPKK) plays a crucial role in a MAPK cascade. ZmMEK1 is the first characterized MAPKK gene in maize. Although ZmMEK1 has been studied in detail in biochemical level, the genomic organization of ZmMEK1 gene is obscure. In this research, we clarified ZmMEK1 is a single-copy gene in the maize genome. Southern blot analysis using 3′ specific region of ZmMEK1 cDNA as a probe revealed the presence of distinct single bands in each lane of EcoRI and HindIII. Although previous Southern blot analysis using full-length ZmMEK1 cDNA as a probe revealed several hybridizing bands, we showed here that all bands come from one genomic fragment corresponding to ZmMEK1 gene. Furthermore, ZmMEK1 was induced by PEG, abscisic acid (ABA), and salicylic acid (SA) and was down-regulated by NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  2. Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    PubMed  CAS  Google Scholar 

  3. Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  PubMed  CAS  Google Scholar 

  4. MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  5. Agarwal PK, Gupta K, Jha B (2010) Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress. Mol Biol Rep 37:981–986

    Article  PubMed  CAS  Google Scholar 

  6. Chai Y, Huang HL, Hu DJ, Luo X, Tao QS, Zhang XL, Zhang SQ (2010) IL-29 and IFN-alpha regulate the expression of MxA, 2′, 5′-OAS and PKR genes in association with the activation of Raf-MEK-ERK and PI3K-AKT signal pathways in HepG2.2.15 cells. Mol Biol Rep 38:139–143

    Article  PubMed  Google Scholar 

  7. Liu YK, Liu YB, Zhang MY, Li DQ (2010) Stomatal development and movement: the roles of MAPK signaling. Plant Signal Behav 5(10):1176–1180

    Article  PubMed  CAS  Google Scholar 

  8. Peng S, Zhang Y, Zhang J, Wang H, Ren B (2010) Effect of ketamine on ERK expression in hippocampal neural cell and the ability of learning behavior in minor rats. Mol Biol Rep 37:3137–3142

    Article  PubMed  CAS  Google Scholar 

  9. Ruimi N, Petrova RD, Agbaria R, Sussan S, Wasser SP, Reznick AZ, Mahajna J (2010) Inhibition of TNFalpha-induced iNOS expression in HSV-tk transduced 9L glioblastoma cell lines by Marasmius oreades substances through NF-kappaB- and MAPK-dependent mechanisms. Mol Biol Rep 37:3801–3812

    Article  PubMed  CAS  Google Scholar 

  10. Xu H, Li K, Yang F, Shi Q, Wang X (2010) Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol Biol Rep 37:3157–3163

    Article  PubMed  CAS  Google Scholar 

  11. Ying B, Yang T, Song X, Hu X, Fan H, Lu X, Chen L, Cheng D, Wang T, Liu D, Xu D, Wei Y, Wen F (2009) Quercetin inhibits IL-1 beta-induced ICAM-1 expression in pulmonary epithelial cell line A549 through the MAPK pathways. Mol Biol Rep 36:1825–1832

    Article  PubMed  CAS  Google Scholar 

  12. Zhu N, Shao Y, Xu L, Yu L, Sun L (2009) Gadd45-alpha and Gadd45-gamma utilize p38 and JNK signaling pathways to induce cell cycle G2/M arrest in Hep-G2 hepatoma cells. Mol Biol Rep 36:2075–2085

    Article  PubMed  CAS  Google Scholar 

  13. Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    Article  PubMed  CAS  Google Scholar 

  14. Nicole MC, Hamel LP, Morency MJ, Beaudoin N, Ellis BE, Seguin A (2006) MAP-ping genomic organization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. BMC Genomics 7:223

    Article  PubMed  Google Scholar 

  15. Hardin SC, Wolniak SM (1998) Molecular cloning and characterization of maize ZmMEK1, a protein kinase with a catalytic domain homologous to mitogen- and stress-activated protein kinase kinases. Planta 206:577–584

    Article  PubMed  CAS  Google Scholar 

  16. Wen JQ, Oono K, Imai R (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Article  PubMed  CAS  Google Scholar 

  17. Melikant B, Giuliani C, Halbmayer-Watzina S, Limmongkon A, Heberle-Bors E, Wilson C (2004) The Arabidopsis thaliana MEK AtMKK6 activates the MAP kinase AtMPK13. FEBS Lett 576:5–8

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi Y, Soyano T, Kosetsu K, Sasabe M, Machida Y (2011) HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol 51:1766–1776

    Article  Google Scholar 

  19. Hackett R, Oh S, Morris P, Grierson D (1998) A tomato MAP kinase kinase gene (accession No.AJ000728) differentially regulated during fruit development, leaf senescence, and wounding. Plant Physiol 117:1525–1527

    Article  Google Scholar 

  20. Pedley KF, Martin GB (2004) Identification of MAPKs and their possible MAPK kinase activators involved in the Pto-mediated defense response of tomato. J Biol Chem 279:49229–49235

    Article  PubMed  CAS  Google Scholar 

  21. Calderini O, Glab N, Bergounioux C, Heberle-Bors E, Wilson C (2001) A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J Biol Chem 276:18139–18145

    Article  PubMed  CAS  Google Scholar 

  22. Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17:1055–1067

    Article  PubMed  CAS  Google Scholar 

  23. Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B (2002) NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell 3:291–297

    Article  PubMed  CAS  Google Scholar 

  24. Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15:352–363

    Article  PubMed  CAS  Google Scholar 

  25. Liu Y, Li D (2008) MAPK signal pathway controls plant cytokinesis. Chin J Biochem Mol Biol 24:1085–1091

    Google Scholar 

  26. Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87–99

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi Y, Soyano T, Sasabe M, Machida Y (2004) A MAP kinase cascade that controls plant cytokinesis. J Biochem 136:127–132

    Article  PubMed  CAS  Google Scholar 

  28. Beck M, Komis G, Muller J, Menzel D, Samaj J (2011) Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22:755–771

    Article  Google Scholar 

  29. Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y (2011) The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22:3778–3790

    Article  Google Scholar 

  30. Krysan PJ, Jester PJ, Gottwald JR, Sussman MR (2002) An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14:1109–1120

    Article  PubMed  CAS  Google Scholar 

  31. Hardin SC, Wolniak SM (2001) Expression of the mitogen-activated protein kinase kinase ZmMEK1 in the primary root of maize. Planta 213:916–926

    Article  PubMed  CAS  Google Scholar 

  32. Liu Y, Zhou Y, Liu L, Sun L, Li D (2011) In silico identification and evolutionary analysis of plant MAPKK6s. Plant Mol Biol Rep. doi:10.1007/s11105-011-0295-4

  33. Wang Y, Deng D, Bian Y, Lv Y, Xie Q (2010) Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Mol Biol Rep 37:3991–4001

    Article  PubMed  CAS  Google Scholar 

  34. Gu L, Liu Y, Zong X, Liu L, Li DP, Li DQ (2010) Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 37:4067–4073

    Article  PubMed  CAS  Google Scholar 

  35. Wu T, Kong XP, Zong XJ, Li DP, Li DQ (2011) Expression analysis of five maize MAP kinase genes in response to various abiotic stresses and signal molecules. Mol Biol Rep. doi:10.1007/s11033-010-0514-3

  36. Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL (2009) Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229:485–495

    Article  PubMed  CAS  Google Scholar 

  37. Liu X, Zuo KJ, Xu JT, Li Y, Zhang F, Yao HY, Wang Y, Chen Y, Qiu CX, Sun XF, Tang KX (2010) Functional analysis of GbAGL1, a D-lineage gene from cotton (Gossypium barbadense). J Exp Bot 61:1193–1203

    Article  PubMed  CAS  Google Scholar 

  38. Zhang F, Zuo K, Zhang J, Liu X, Zhang L, Sun X, Tang K (2010) An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development. J Exp Bot 61:3599–3613

    Article  PubMed  CAS  Google Scholar 

  39. Appels R, Gerlach WL, Dennis ES, Swift H, Peacock WJ (1980) Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma 78:293–311

    Article  CAS  Google Scholar 

  40. Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2011) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 30871457, 31071337) and the State Key Basic Research and Development Plan of China (No. 2009CB118500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dequan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhou, Y., Liu, L. et al. Maize ZmMEK1 is a single-copy gene. Mol Biol Rep 39, 2957–2966 (2012). https://doi.org/10.1007/s11033-011-1057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1057-y

Keywords

Navigation