Skip to main content
Log in

Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The chromosomal locations of ribosomal DNA in wheat, rye and barley have been determined by in situ hybridization using high specific activity 125I-rRNA. The 18S-5.8S-26S rRNA gene repeat units in hexaploid wheat (cv. Chinese Spring) are on chromosomes 1B, 6B and 5D. In rye (cv. Imperial) the repeat units occur at a single site on chromosome 1R(E), while in barley (cv. Clipper) they are on both the chromosomes (6 and 7) which show secondary constrictions. In wheat and rye the major 5S RNA gene sites are close to the cytological secondary constrictions where the 18S-5.8S-26S repeating units are found, but in barley the site is on a chromosome not carrying the other rDNA sequences. — Restriction enzyme and R-loop analyses showed the 18S-5.8S-26S repeating units to be approximately 9.5 kb long in wheat, 9.0 kb in rye and barley to have two repeat lengths of 9.5 kb and 10 kb. Electron microscopic and restriction enzyme data suggest that the two barley forms may not be interpersed. Digestion with EcoR1 gave similar patterns in the three species, with a single site in the 26S gene. Bam H1 digestion detected heterogeneity in the spacer regions of the two different repeats in barley, while in rye and wheat heterogeneity was shown within the 26S coding sequence by an absence of an effective Bam H1 site in some repeat units. EcoR1 and Bam H1 restriction sites have been mapped in each species. — The repeat unit of the 5S RNA genes was approximately 0.5 kb in wheat and rye and heterogeneity was evident. The analysis of the 5S RNA genes emphasizes the homoeology between chromosomes 1B of wheat and 1R of rye since both have these genes in the same position relative to the secondary constriction. In barley we did not find a dominant monomer repeat unit for the 5S genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels, R., Driscoll, C., Peacock, W.J.: Heterochromatin and highly repeated DNA sequences in rye (Secale cereale). Chromosoma 70, 67–89 (1978)

    Google Scholar 

  • Artavanis-Tsakonas, S., Schedl, P., Tsudi, C., Pirrotta, V., Steward, R., Gehring, W.J.: The 5S genes of Drosophila melanogaster. Cell 12, 1057–1067 (1977)

    Google Scholar 

  • Azad, A.A., Lane, B.G.: Wheat-embryo ribonucleates I. Subcellular localization of a satellite polyribonucleotide. Canad. J. Biochem. 51, 606–612 (1973)

    Google Scholar 

  • Azad, A.A., Lane, B.G.: Wheat embryo ribonucleates. IV. Factors that influence the formation and stability of a complex between 5S rRNA and 18S rRNA. Canad. J. Biochem. 53, 320–327 (1975)

    Google Scholar 

  • Bell, G.I., Degennaro, L.J., Gelfand, D.H., Bishop, R.J., Valenzuela, P., Rutter, W.J.: Ribosomal RNA genes of Saccharomyces cerevisiae. I. Physical map of the repeating unit and the location of the regions coding for 5S, 5.8S, 18S and 25S ribosomal RNA's. J. biol. Chem. 252, 8118–8125 (1977)

    Google Scholar 

  • Birnstiel, M.L., Sells, B.H., Purdom, I.F.: Kinetic complexity of RNA molecules. J. molec. Biol. 63, 21–39 (1972)

    Google Scholar 

  • Bishop, J.O., Robertson, F.W., Burns, J.A., Melli, M.: Methods for the analysis of deoxyribonucleic acid-ribonucleic acid hybridization data. Biochem. J. 115, 361–370 (1969)

    Google Scholar 

  • Carroll, D., Brown, D.D.: Repeating units of Xenopus laevis oocyte-type 5S DNA are heterogeneous in length. Cell 7, 467–475 (1976)

    Google Scholar 

  • Cockburn, A.F., Newkirk, M.J., Firtel, R.A.: Organization of the ribosomal RNA genes and spacer of Dictyostelium discoideum. Mapping of nontranscribed regions. Cell 9, 605–613 (1976)

    Google Scholar 

  • Cory, S., Adams, J.M.: A very large repeating unit of mouse DNA containing the 18S, 28S and 5.8S rRNA genes. Cell 11, 795–805 (1977)

    Google Scholar 

  • Crosby, A.R.: Nucleolar activity of lagging chromosomes in wheat. Amer. J. Bot. 44, 813–822 (1957)

    Google Scholar 

  • Darvey, N.L., Driscoll, C.J.: Nucleolar behaviour in Triticum. Chromosoma (Berl.) 36, 131–139 (1972)

    Google Scholar 

  • Doershug, E.B.: Placement of genes for ribosomal RNA within the nucleolus organizing body of Zea mays. Chromosoma (Berl.) 55, 43–56 (1976)

    Google Scholar 

  • Flavell, R.B., O'Dell, M.: Ribosomal genes on homoeologous chromosomes of groups 5 and 6 in hexaploid wheat. Heredity 37, 377–385 (1976)

    Google Scholar 

  • Flavell, R.B., Smith, D.B.: The role of homoeologous group I chromosomes in the control of rRNA genes in wheat. Biochem. Genet. 12, 271–279 (1974a)

    Google Scholar 

  • Flavell, R.B., Smith, D.B.: Variation in nucleolar rRNA gene multiplicity in wheat and rye. Chromosoma (Berl.) 47, 327–334 (1974b)

    Google Scholar 

  • Ford, P.J., Brown, R.D.: Sequences of 5S ribosomal RNA from Xenopus mulleri and the evolution of 5S gene-coding sequences. Cell 8, 485–493 (1976)

    Google Scholar 

  • Gill, B.S., Kimber, G.: The Giemsa C-banded karyotypes of rye. Proc. nat. Acad. Sci. (Wash.) 71, 1247–1249 (1974)

    Google Scholar 

  • Givens, J.F., Phillips, R.L.: The nucleolus organizer region of maize. Chromosoma (Berl.) 57, 103–117 (1976)

    Google Scholar 

  • Glover, D.M., Hogness, D.S.: A novel arrangement of the 18S and 28S sequences in a repeating unit of Drosophila melanogaster rDNA. Cell 10, 167–176 (1977)

    Google Scholar 

  • Hemleben, V., Grierson, D., Dertmann, H.: The use of equilibrium centrifugation of actinomycin D-cesium chloride for the purification of ribosomal DNA. Plant Sci. Lett. 9, 129–135 (1977)

    Google Scholar 

  • Liang, G.H., Wang, A.S., Phillips, R.L.: Control of ribosomal RNA gene multiplicity in wheat. Canad. J. Genet. Cytol. 19, 425–435 (1977)

    Google Scholar 

  • Lima-de-Faria, A.: Chromomere analysis of the chromosome complement of rye. Chromosoma 5, 1–68 (1952)

    Google Scholar 

  • Maizels, N.: Dictyostelium 17S, 25S and 5S rDNAs lie within a 38,000 base pair repeated unit. Cell 9, 431–438 (1976)

    Google Scholar 

  • McClintock, B.: The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch. 21, 294–328 (1934)

    Google Scholar 

  • Mohan, J., Flavell, R.B.: Ribosomal RNA cistron multiplicity and nucleolar organizers in hexaploid wheat. Genetics 76, 33–44 (1974)

    Google Scholar 

  • Nath, K., Bollon, A.P.: Organization of the yeast ribosomal gene cluster via cloning and restriction analysis. J. biol. Chem. 252, 6562–6571 (1977)

    Google Scholar 

  • Pardue, M.L., Brown, D.D., Birnstiel, M.L.: Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma (Berl.) 42, 191–203 (1973)

    Google Scholar 

  • Pellegrini, M., Manning, J., Davidson, N.: Sequence arrangement of the rDNA of Drosophila melanogaster. Cell 10, 213–224 (1977)

    Google Scholar 

  • Prensky, W.: The radioiodination of RNA and DNA to high specific activities. Methods in cell biol. (D.M. Prescott, ed.), XIII, 121–152 (1976)

  • Rubin, G.M., Sulston, J.E.: Physical linkage of the 5S cistrons to the 18S and 28S ribosomal RNA cistrons in Saccharomyces cerevisiae. J. molec. Biol. 79, 521–530 (1973)

    Google Scholar 

  • Sears. E.R.: Nullisomic-tetrasomic combinations in hexaploid wheat. In: Chromosome manipulations and plant genetics (R. Riley and K.R. Lewis, eds). Heredity (Suppl.) 20, 29–45 (1966)

  • Southern, E.M.: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. molec. Biol. 98, 503–517 (1975)

    Google Scholar 

  • Stambrook, P.J.: Organization of the genes coding for 5S RNA in the Chinese Hamster. Nature (Lond.) 259, 639–641 (1976)

    Google Scholar 

  • Szabo, P., Elder, R., Steffensen, D.M., Uhlenbeck, O.C.: Quantitative in situ hybridization of ribosomal RNA species to polytene chromosomes of D. melanogaster. J. molec. Biol. 115, 539–563 (1977)

    Google Scholar 

  • Tartof, K.D., Dawid, I.B.: Similarities and differences in the structure of X and Y chromosome rRNA genes of Drosophila. Nature (Lond.) 263, 27–30 (1976)

    Google Scholar 

  • Thomas, M., White, R.L., Davis, R.W.: Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc. nat. Acad. Sci. (Wash.) 73, 2294–2298 (1976)

    Google Scholar 

  • Trendelenburg, M.F., Scheer, U., Zentgraf, H., Franke, W.W.: Heterogeneity of spacer lengths in circles of amplified ribosomal DNA of two insect species. Dytiscus marginalis and Acheta domesticus. J. molec. Biol. 108, 453–470 (1976)

    Google Scholar 

  • Wellauer, P.K., Reeder, R.H.: A comparison of the structural organization of amplified ribosomal DNA from Xenopus mulleri and Xenopus laevis. J. molec. Biol. 94, 151–161 (1975)

    Google Scholar 

  • Wellauer, P.K., Dawid, I.B.: The structural organization of ribosomal DNA in Drosophila melanogaster. Cell 10, 193–212 (1977)

    Google Scholar 

  • Wellauer, P.K., Dawid, I.B., Brown, D.D., Reeder, R.H.: The molecular basis for length heterogeneity in ribosomal DNA from Xenopus laevis. J. molec. Biol. 105, 461–486 (1976)

    Google Scholar 

  • Wimber, D.E., Steffensen, D.M.: Localization of 5S RNA genes on Drosophila chromosomes by RNA-DNA hybridization. Science 170, 639–641 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appels, R., Gerlach, W.L., Dennis, E.S. et al. Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma 78, 293–311 (1980). https://doi.org/10.1007/BF00327389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327389

Keywords

Navigation