Skip to main content
Log in

Genome-wide analysis of BURP domain-containing genes in Maize and Sorghum

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

BURP domain-containing genes comprise a large plant-specific family, yet the functions are very poorly understood, especially in maize (Zea mays) and sorghum (Sorghum vulgare). In this study, 26 BURP family genes in maize (ZmBURP01-15) and sorghum (SbBURP01-11) were identified including the gene structure, phylogenetic relationship, conserved protein motifs and chromosome locations. These genes have diverse exon–intron structures and distinct organization of putative motifs. The distributions of the genes vary: 15 ZmBURP genes are located in maize on five chromosomes, and 11 SbBURP genes in sorghum are on six chromosomes. Based on the phylogenetic analysis of BURP protein sequences from maize, sorghum and other plants, the BURP genes in maize and sorghum were categorized into five subfamilies (RD22-like, PG1β-like, BURP VI, BURP VII and BURP VIII). Transcript level analysis of ZmBURP genes revealed the expression patterns of BURP genes in maize under diffferent stress conditions. The results suggested that only eight ZmBURP genes were responsive to at least one of the stress treatments applied. Among these genes, seven genes (ZmBURP04, ZmBURP05, ZmBURP08, ZmBURP09, ZmBURP12, ZmBURP14, ZmBURP15) were responsive to ABA and cold respectively, two genes (ZmBURP06 and ZmBURP14) were responsive to NaCl. The results presented here provide useful information for further functional analysis of the BURP gene family in maize and sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hattori J, Boutilier KA, van Lookeren Campagne MM, Miki BL (1998) A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol Gen Genet 259:424–428. doi:10.1007/s004380050832

    Article  PubMed  CAS  Google Scholar 

  2. Baumlein H, Boerjan W, Nagy I, Bassuner R, Van Montagu M, Inze D, Wobus U (1991) A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol Gen Genet 225:459–467. doi:10.1007/BF00261688

    Article  PubMed  CAS  Google Scholar 

  3. Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of RD22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238:17–25. doi:10.1007/BF00279525

    PubMed  CAS  Google Scholar 

  4. Zheng L, Heupel RC, DellaPenna D (1992) The beta subunit of tomato fruit polygalacturonase isoenzyme 1: isolation, characterization, and identification of unique structural features. Plant Cell 4:1147–1156. doi:10.1105/tpc.4.9.1147

    Article  PubMed  CAS  Google Scholar 

  5. Ding XP, Hou X, Xie KB, Xiong LZ (2009) Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses. Planta 230:149–163. doi:10.1007/s00425-009-0929-z

    Article  PubMed  CAS  Google Scholar 

  6. Van Son L, Tiedemann J, Rutten T, Hillmer S, Hinz G, Zank T, Manteuffel R, Bäumlein H (2009) The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and over-expression of the cognate gene distorts seed development. Plant Mol Biol 71(4–5):319–329. doi:10.1007/s11103-009-9526-6

    Article  PubMed  CAS  Google Scholar 

  7. Chen L, Guan L, Seo M, Hoffmann F, Adachi T (2005) Developmental expression of ASG-1 during gametogenesis in apomictic guinea grass (Panicum maximum). J Plant Physiol 162:1141–1148. doi:10.1016/j.jplph.2005.02.010

    Article  PubMed  CAS  Google Scholar 

  8. Batchelor AK, Boutilier K, Miller SS, Hattori J, Bowman LA, Hu M, Lantin S, Johnson DA, Miki BLA (2002) SCB1, a BURP-domain protein gene, from developing soybean seed coats. Planta 215:523–532. doi:10.1007/s00425-002-0798-1

    Article  PubMed  CAS  Google Scholar 

  9. Wang AM, Xia Q, Xie WS, Datla R, Selvaraj G (2003) The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. Proc Natl Acad Sci USA 100:14487–14492. doi:10.1073_pnas.2231254100

    Article  PubMed  CAS  Google Scholar 

  10. Granger C, Coryell V, Khanna A, Keim P, Vodkin L, Shoemaker RC (2002) Identification, structure, and differential expression of members of a BURP domain containing protein family in soybean. Genome 45:693–701. doi:10.1139/G02-032

    Article  PubMed  CAS  Google Scholar 

  11. Datta N, LaFayette PR, Kroner PA, Nagao RT, Key JL (1993) Isolation and characterization of three families of auxin down-regulated cDNA clones. Plant Mol Biol 21:859–869. doi:10.1007/BF00027117

    Article  PubMed  CAS  Google Scholar 

  12. Ragland M, Soliman KM (1997) Sali5–4a and Sali3–2, two genes induced by aluminum in soybean roots. Plant Physiol 114:395–396

    Article  Google Scholar 

  13. Teerawanichpan P, Xia Q, Caldwell SJ, Datla R, Selvaraj G (2009) Protein storage vacuoles of Brassica napus zygotic embryos accumulate a BURP domain protein and perturbation of its production distorts the PSV. Plant Mol Biol 71(4–5):331–343. doi:10.1007/s11103-009-9541-7

    Article  PubMed  CAS  Google Scholar 

  14. Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 247:391–398. doi:10.1007/BF00293139

    Article  PubMed  CAS  Google Scholar 

  15. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539. doi:10.1105/tpc.5.11.1529

    Article  PubMed  CAS  Google Scholar 

  16. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid regulated gene expression. Plant Cell 9:1859–1868. doi:10.1105/tpc.9.10.1859

    Article  PubMed  CAS  Google Scholar 

  17. Yu S, Zhang L, Zuo K, Li Z, Tang K (2004) Isolation and characterization of a BURP domain-containing gene BnBDC1 from Brassica napus involved in abiotic and biotic stress. Physiol Plant 122:210–218. doi:10.1111/j.1399-3054.2004.00391.x

    Article  CAS  Google Scholar 

  18. Fernandez L, Torregrosa L, Terrier N, Sreekantan L, Grimplet J, Davies C, Thomas MR, Romieu C, Ageorges A (2007) Identification of genes associated with flesh morphogenesis during grapevine fruit development. Plant Mol Biol 63:303–307. doi:10.1007/s11103-006-9090-2

    Article  Google Scholar 

  19. Boutilier KA, Gines MJ, DeMoor JM, Huang B, Baszczynski CL, Iyer VN, Miki BL (1994) Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol Biol 26(6):1711–1723. doi:10.1007/BF00019486

    Article  PubMed  CAS  Google Scholar 

  20. Held BM, John I, Wang H, Moragoda L, Tirimanne TS, Wurtele ES, Colbert JT (1997) ZRP2: a novel maize gene whose mRNA accumulates in the root cortex and mature stems. Plant Mol Biol 35:367–375. doi:10.1023/A:1005830313272

    Article  PubMed  CAS  Google Scholar 

  21. Chen Q, Atkinson A, Otsuga D, Christensen T, Reynolds L, Drews GN (1999) The Arabidopsis filamentous flower gene is required for flower formation. Development 126:2715–2726

    PubMed  CAS  Google Scholar 

  22. Bassüner R, Bäumlein H, Huth A, Jung R, Wobus U, Rapoport TA, Saalbach G, Müntz K (1988) Abundant embryonic mRNA in feld bean (Vicia faba L.) codes for a new class of seed proteins: cDNA cloning and characterization of the primary translation product. Plant Mol Biol 11:321–334. doi:10.1007/BF00027389

    Article  Google Scholar 

  23. Jeon JS, Chung YY, Lee S, Yi GH, Oh BG, An G (1999) Isolation and characterization of an anther-specific gene, RA8. from rice (Oryza sativa L.). Plant Mol Biol 39:35–44. doi:10.1023/A:1006157603096

    PubMed  CAS  Google Scholar 

  24. Yue GD, Hu XR, He Y, Yang A, Zhang J (2010) Identification and characterization of two members of the FtsH gene family in maize (Zea mays L.). Mol. Biol Rep 37(2):855–863. doi:10.1007/s11033-009-9691-3

    Article  CAS  Google Scholar 

  25. Wang YJ, Deng DX, Bian YL, Lv YP, Xie Q (2010) Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.). Mol. Biol Rep 37(8):3991–4001. doi:10.1007/s11033-010-0058-6

    Article  CAS  Google Scholar 

  26. Cao ZP, Jia ZW, Liu YJ, Wang M, Zhao JF, Zheng J, Wang GY (2010) Constitutive expression of ZmsHSP in Arabidopsis enhances their cytokinin sensitivity. Mol Biol Rep 37(2):1089–1097. doi:10.1007/s11033-009-9848-0

    Article  PubMed  CAS  Google Scholar 

  27. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi:10.1126/science.1178534

    Article  PubMed  CAS  Google Scholar 

  28. Paterson AH, Bowers JE, Bruggmann R, Dubchak I et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556. doi:10.1038/nature07723

    Article  PubMed  CAS  Google Scholar 

  29. Finn RD, Tate J, Mistry J et al. (2008) The Pfam protein families database. Nucleic Acids Res 36(Database issue):D281–D288. doi:10.1093/nar/gkm960

    Google Scholar 

  30. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:142–144. doi:10.1093/nar/gkh088

    Article  Google Scholar 

  31. Larkin MA, Blackshields G, Brown NP et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Google Scholar 

  32. Bailey TL, Boden M, Buske FA et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208. doi:10.1093/nar/gkp335

  33. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  34. Tang YL, Li XJ, Zhong YT, Zhang YZ (2007) Functional analysis of soybean SALI3–2 in yeast. J Shenzhen Univ Sci Eng 24:324–330. doi:1000-2618(2007)03-0324-07

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National High-Tech Research and Development Program (863 Program) (No.2008AA10Z408) and the National Natural Science Foundation of China (No.10675002). We thank members of the Key Laboratory of Crop biology of Anhui province for their assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beijiu Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, D., Jiang, H., Zhang, J. et al. Genome-wide analysis of BURP domain-containing genes in Maize and Sorghum. Mol Biol Rep 38, 4553–4563 (2011). https://doi.org/10.1007/s11033-010-0587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0587-z

Keywords

Navigation