Skip to main content
Log in

Functional analysis of a rice late pollen-abundant UDP-glucose pyrophosphorylase (OsUgp2) promoter

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

OsUgp2, a rice UDP-glucose pyrophosphorylase gene, has previously been shown to preferentially express in maturing pollens and plays an important role in pollen starch accumulation. Here, a 1943 bp promoter fragment (P1943) of OsUgp2 was characterized by 5′ deletion and gain-of-function experiments. P1943 and its 5′ deletion derivatives (P1495, P1005, P665 and P159) were fused to GUS reporter gene and stably introduced into rice plants. Histochemical analyses of different tissues and pollens at different developmental stages of the transgenic plants showed that P1943 could only direct GUS expression in binucleate pollens. P1495 and P1005 could still drive GUS expression in binucleate pollens but at a lower level. On the other hand, neither P665 nor P159 transformant exhibited any GUS activity in pollens. Gain-of-function analyses showed that the region (−1005 to −665 relative to translation start site) combined with a minimal CaMV 35S promoter could direct GUS expression in pollens. Further analysis of 5′ deletion truncated at −952, −847 and −740 delimited a 53 bp region (−1005 to −952) essential for pollen-specific expression. The 53 bp sequence contains two motifs of TTTCT and TTTC, which were known to be pollen-specific cis-elements. In addition, the same P1943-GUS fusion construct was introduced into tobacco to analyze its specificity in dicotyledon. Interestingly, the GUS expression pattern in transgenic tobacco was quite different from that in rice. High level of GUS expression was detected in mature pollens as well as leaves, roots, sepals and stigmas. These findings suggested a complicated transcriptional regulation of OsUgp2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4:879–887. doi:10.1105/tpc.4.8.879

    Article  PubMed  CAS  Google Scholar 

  2. McCormick S (1993) Male gametophyte development. Plant Cell 5:1265–1275. doi:10.1105/tpc.5.10.1265

    Article  PubMed  Google Scholar 

  3. Borge M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478. doi:10.1093/jxb/ern355

    Article  Google Scholar 

  4. Mascarenhas JP (1990) Gene activity during pollen development. Annu Rev Plant Physiol Plant Mol Biol 41:317–338

    Article  Google Scholar 

  5. Hamilton DA, Mascarenhas JP (1997) Gene expression during pollen development. In: Shibanna KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 40–58

    Chapter  Google Scholar 

  6. Becker JD, Boavida LC, Carneiro J, Haury M, Feijó J (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725. doi:10.1104/pp.103.028241

    Article  PubMed  CAS  Google Scholar 

  7. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85. doi:10.1186/gb-2004-5-11-r85

    Article  PubMed  Google Scholar 

  8. Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756. doi:10.1104/pp.104.057935

    Article  PubMed  CAS  Google Scholar 

  9. Twell D, Wing R, Yamaguchi J, McCormick S (1989) Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet 217:240–245

    Article  PubMed  CAS  Google Scholar 

  10. Weterings K, Schrauwen J, Wullems G, Twell D (1995) Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J 8(1):55–63. doi:10.1046/j.1365-313X.1995.08010055.x

    Article  PubMed  CAS  Google Scholar 

  11. Treacy BK, Hattori J, Prudhomme I, Barbour E, Boutilier K, Baszczynski CL, Huang B, Johnson DA, Miki BL (1997) Bnm1, a Brassica pollen-specific gene. Plant Mol Biol 34(4):603–611. doi:10.1023/A:1005851801107

    Article  PubMed  CAS  Google Scholar 

  12. Xu H, Goulding N, Zhang Y, Swoboda I, Singh MB, Bhalla PL (1999) Promoter region of Ory s 1, the major rice pollen allergen gene. Sex Plant Reprod 12:125–126. doi:10.1007/s004970050182

    Article  CAS  Google Scholar 

  13. Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45(5):577–585. doi:10.1023/A:1010695226241

    Article  PubMed  CAS  Google Scholar 

  14. Coronado M-J, Testillano PS, Wilson C, Vicente O, Heberle-Bors E, Risueno M-C (2007) In situ molecular identification of the Ntf4 MAPK expression sites in maturing and germinating pollen. Biol Cell 99:209–221. doi:10.1042/BC20060076

    Article  PubMed  CAS  Google Scholar 

  15. Song J, Zhang L, Cao J (2009) Molecular cloning and characterization of a novel pollen predominantly membrane protein gene BcMF12 from Brassica campestris ssp. Chinensis. Mol Biol Rep 36:2307–2314. doi:10.1007/s11033-009-9449-y

    Article  PubMed  CAS  Google Scholar 

  16. Twell D, Yamaguchi J, McCormick S (1990) Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109(3):705–713

    PubMed  CAS  Google Scholar 

  17. Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507. doi:10.1101/gad.5.3.496

    Article  PubMed  CAS  Google Scholar 

  18. Eyal Y, Curie C, McCormick S (1995) Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell 7:373–384. doi:10.1105/tpc.7.3.373

    Article  PubMed  CAS  Google Scholar 

  19. Bate N, Twell D (1998) Functional architecture of a late promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator element. Plant Mol Biol 37:859–869. doi:10.1023/A:1006095023050

    Article  PubMed  CAS  Google Scholar 

  20. Hamilton DA, Schwarz YH, Mascarenhas JP (1998) A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol 38(4):663–669. doi:10.1023/A:1006083725102

    Article  PubMed  CAS  Google Scholar 

  21. Mu H, Ke J, Liu W, Zhuang Ch, YIP W (2009) UDP-glucose pyrophosphorylase2 (OsUgp2), a pollen-preferential gene in rice, plays a critical role in starch accumulation during pollen maturation. Chin Sci Bull 54(2):234–243. doi:10.1007/s11434-008-0568-y

    Article  CAS  Google Scholar 

  22. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27(1):297–300

    Article  PubMed  CAS  Google Scholar 

  23. Lescot M, De′hais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze′ P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  CAS  Google Scholar 

  24. Liu Q, Zhang J, Wang Z, Hong M, Gu M (1998) A highly efficient transformation system mediated by Agrobacterium tumefaciens in rice (Oryza sativa L.). Acta Phytophysiol Sin 24(3):259–271

    CAS  Google Scholar 

  25. Feng J, Lu Y, Liu X, XU X (2001) Pollen development and its stages in rice (Oryza sativa L.). Chin J Rice Sci 15:21–28

    Google Scholar 

  26. Svab Z, Hajdukiewica P, Maliga P (1995) Generation of transgenic tobacco plants by cocultivation of leaf disks with Agrobacterium pPZP binary vectors. In: Maliga P, Klessig DF, Cashmore AR, Gruissem W, Varner JE (eds) Methods in plant molecular biology: a laboratory course manual. Cold Spring Harbor Laboratory Press, NY, pp 55–77

    Google Scholar 

  27. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  28. Bradford MM, Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  PubMed  CAS  Google Scholar 

  29. Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, Zhao J, Sun M, He R, He G (2007) Rice UDP-glucose pyrophosphrylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell 19:847–861. doi:10.1105/tpc.106.044123

    Article  PubMed  CAS  Google Scholar 

  30. Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW (1990) Intron-mediated enhancement of heterologous gene-expression in maize. Plant Mol Biol 15:913–920. doi:10.1007/BF00039430

    Article  PubMed  CAS  Google Scholar 

  31. Rose AB (2008) Intron-mediated regulation of gene expression. In: Reddy ASN, Golovkin M (eds) Nuclear pre-mRNA processing in plants: current topics in microbiology and immunology, vol 326. Springer-Verlag, Berlin Heidelberg, pp 277–290

    Google Scholar 

  32. Morello L, Breviario D (2008) Plant spliceosomal introns: not only cut and paste. Curr Genom 9:227–238. doi:10.2174/138920208784533629

    Article  CAS  Google Scholar 

  33. Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799–1810. doi:10.1105/tpc.12.10.1799

    Article  PubMed  CAS  Google Scholar 

  34. Jeong YM, Mun JH, Lee I, Woo JC, Hong CB, Kim SG (2006) Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. Plant Physiol 140:196–209. doi:10.1104/pp.105.071316

    Article  PubMed  CAS  Google Scholar 

  35. Karthikeyan AS, Ballachanda DN, Raghothama KG (2009) Promoter deletion analysis elucidates the role of cis-elements and 5′ UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis. Physiol Plantarum 136:10–18. doi:10.1111/j.1399-3054.2009.01207.x

    Article  CAS  Google Scholar 

  36. Menossi M, Rabaneda F, Puigdomènech P, Martnez-Izquierdo JA (2003) Analysis of regulatory elements of the promoter and the 3′ untranslated region of the maize Hrgp gene coding for a cell wall protein. Plant Cell Rep 21:916–923. doi:10.1007/s00299-003-0602-0

    PubMed  CAS  Google Scholar 

  37. Morello L, Bardini M, Sala MCF, Breviario D (2006) Functional analysis of DNA sequences controlling the expression of the rice OsCDPK2 gene. Planta 223:479–491. doi:10.1007/s00425-005-0105-z

    Article  PubMed  CAS  Google Scholar 

  38. Sieburth LE, Mayerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–365. doi:10.1105/tpc.9.3.355

    Article  PubMed  CAS  Google Scholar 

  39. Weise A, Lalonde S, Kühn C, Frommer WB, Ward JM (2008) Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells. Plant Mol Biol 68:251–262. doi:10.1007/s11103-008-9366-9

    Article  PubMed  CAS  Google Scholar 

  40. Kim YJ, Lee SH, Park KY (2004) A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco. FEBS Lett 578:229–235. doi:10.1016/j.febslet.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  41. Ahlandsberg S, Sun C, Jansson C (2002) An intronic element directs endosperm-specific expression of the sbeIIb gene during barley seed development. Plant Cell Rep 20:864–868. doi:10.1007/s00299-001-0402-3

    Article  CAS  Google Scholar 

  42. Lu J, Sivamani E, Azhakanandam K, Samadder P, Li X, Qu R (2008) Gene expression enhancement mediated by the 5′ UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol Genet Genom 279:563–572. doi:10.1007/s00438-008-0333-6

    Article  CAS  Google Scholar 

  43. Maas C, Laufs J, Grant S, Korfhage C, Werr W (1991) The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol Biol 16:199–207. doi:10.1007/BF00020552

    Article  PubMed  CAS  Google Scholar 

  44. Custers JBM, Oldenhof MT, Schrauwen JAM, Cordewener JHG, Wullems GJ, van Campagne MML (1997) Analysis of microspore-specific promoters in transgenic tobacco. Plant Mol Biol 35(6):689–699. doi:10.1023/A:1005846527674

    Article  PubMed  CAS  Google Scholar 

  45. Okada T, Sasake Y, Ohta R, Onozuka N, Toriyama K (2000) Expression of Bra r 1 gene in transgenic tobacco and Bra r 1 promoter activity in pollen of various plant species. Plant Cell Physiol 41(6):757–766. doi:10.1093/pcp/41.6.757

    PubMed  CAS  Google Scholar 

  46. Xu H, Sean PD, Kwan BYH, Andrew PO, Mohan S, Knox RB (1993) Haploid and diploid expression of a Brassica campestris anther-specific gene promoter in Arabidopsis and tobacco. Mol Gen Genet 239:58–65

    PubMed  CAS  Google Scholar 

  47. Vitale A, Wu R, Cheng Z, Meagher RB (2003) Multiple conserved 5′ elements are required for high-level pollen expression of the Arabidopsis reproductive actin ACT1. Plant Mol Biol 52:1135–1151. doi:10.1023/B:PLAN.0000004309.06973.16

    Article  PubMed  CAS  Google Scholar 

  48. Hamilton DA, Roy M, Rueda J, Sindhu RK, Sanford J, Mascarenhas JP (1992) Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Mol Biol 18(2):211–218. doi:10.1007/BF00034950

    Article  PubMed  CAS  Google Scholar 

  49. Tebbutt SJ, Rogers HJ, Lonsdale DM (1994) Characterization of a tobacco gene encoding a pollen-specific polygalacturonase. Plant Mol Biol 25(2):283–297. doi:10.1007/BF00023244

    Article  PubMed  CAS  Google Scholar 

  50. Zou J, Zhan X, Wu H, Wang H, Cheung A (1994) Characterization of a rice pollen-specific gene and its expression. Am J Bot 81:552–561

    Article  CAS  Google Scholar 

  51. Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134(3):1080–1087. doi:10.1104/pp.103.035998

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Mei Hong for her critical review on the manuscript. We would like to thank Linjian Huang provided us the vector of pCAMBRIA1300-G. The project supported by the National Natural Science Foundation of China (Grant No. 30370800) and in part sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Gan, Z., He, Y. et al. Functional analysis of a rice late pollen-abundant UDP-glucose pyrophosphorylase (OsUgp2) promoter. Mol Biol Rep 38, 4291–4302 (2011). https://doi.org/10.1007/s11033-010-0553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0553-9

Keywords

Navigation