Skip to main content
Log in

Expression analysis of five maize MAP kinase genes in response to various abiotic stresses and signal molecules

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes. Plant MAPK cascades are complicated networks and play vital roles in signal transduction induced by biotic and abiotic stresses. In this paper, expression patterns of MAPKs in maize roots treated with low-temperature, osmotic stresses, wounding, plant hormones and UV-C irradiation were investigated. Semi-quantitative RT-PCR reveals that the expression of MAPKs in maize roots which treated with low-temperature in light or in low light are inducible. The expression patterns of MAPKs in maize roots with treatments of CaCl2, SA, GA and wounding are approximately the same. A detailed time course experiment shows that the expression patterns of ZmSIMK are different with treatments of PEG and NaCl, respectively. These results suggest that the expression patterns of MAPKs are complicated and the signal pathways are interlaced into a network in maize roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GA:

Gibberellin acid

SA:

Salicylic acid

ET:

Ethylene

UV-C:

Ultraviolet C

References

  1. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  2. MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  3. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  PubMed  CAS  Google Scholar 

  4. Fiil BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12:615–621

    Article  PubMed  CAS  Google Scholar 

  5. Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    Article  PubMed  CAS  Google Scholar 

  6. Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12:421–426

    Article  PubMed  CAS  Google Scholar 

  7. Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  PubMed  CAS  Google Scholar 

  8. Berberich T, Sano H, Kusano T (1999) Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize. Mol Gen Genet 262:534–542

    Article  PubMed  CAS  Google Scholar 

  9. Ding H, Zhang A, Wang J, Lu R, Zhang H, Zhang J, Jiang M (2009) Identity of an ABA-activated 46 kDa mitogen-activated protein kinase from Zea mays leaves: partial purification, identification and characterization. Planta 230:239–251

    Article  PubMed  CAS  Google Scholar 

  10. Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009) Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60:3221–3238

    Article  PubMed  CAS  Google Scholar 

  11. Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    Article  PubMed  CAS  Google Scholar 

  12. Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    Article  PubMed  CAS  Google Scholar 

  13. Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL (2009) Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229:485–495

    Article  PubMed  CAS  Google Scholar 

  14. Wang J, Ding H, Zhang A, Ma F, Cao J, Jiang M (2010) A novel mitogen-activated protein kinase gene in Maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52:442–452

    PubMed  CAS  Google Scholar 

  15. Gu L, Liu Y, Zong Xi, Liu L, Li D, Li D (2010) Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 37:4067–4073

    Article  PubMed  CAS  Google Scholar 

  16. Arnon DI, Hoagland DR (1939) A comparison of water culture and soil as media for crop production. Science 89:512–514

    Article  PubMed  CAS  Google Scholar 

  17. Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, Zhang H, Swaller TJ, Lu YP, Bouck J, Flavell RB, Feldmann KA (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69:179–194

    Article  PubMed  CAS  Google Scholar 

  18. Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, Rakwal R (2003) Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophy Res Commun 300:775–783

    Article  CAS  Google Scholar 

  19. Agrawal GK, Iwahashi H, Rakwal R (2003) Rice MAPKs. Biochem Biophy Res Commun 302:171–180

    Article  CAS  Google Scholar 

  20. Reyna NS, Yang Y (2006) Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact 19:530–540

    Article  PubMed  CAS  Google Scholar 

  21. Wen JQ, Oono K, Imai R (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Article  PubMed  CAS  Google Scholar 

  22. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  PubMed  CAS  Google Scholar 

  23. Huang HJ, Fu SF, Tai YH, Chou WC, Huang DD (2002) Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive. Physiol Plant 114:572–580

    Article  PubMed  CAS  Google Scholar 

  24. Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophy Res Commun 294:1009–1016

    Article  CAS  Google Scholar 

  25. Song FM, Goodman RM (2002) OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta 215:997–1005

    Article  PubMed  CAS  Google Scholar 

  26. Rohila JS, Yang Y (2007) Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol 49:751–759

    Article  CAS  Google Scholar 

  27. Agrawal GK, Tamogami S, Iwahashi H, Agrawal VP, Rakwal R (2003) Transient regulation of jasmonic acid-inducible rice MAP kinase gene (OsBWMK1) by diverse biotic and abiotic stresses. Plant Physiol Biochem 41:355–361

    Article  CAS  Google Scholar 

  28. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH et al (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    Article  PubMed  CAS  Google Scholar 

  29. Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA 106:20520–20525

    Article  PubMed  CAS  Google Scholar 

  30. Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    Article  PubMed  CAS  Google Scholar 

  31. Lee JS, Wang S, Sritubtim S, Chen JG, Ellis BE (2009) Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J 57:975–985

    Article  PubMed  CAS  Google Scholar 

  32. Mockaitis K, Howell SH (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24:785–796

    Article  PubMed  CAS  Google Scholar 

  33. Knetsch M, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S (1996) Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8:1061–1067

    Article  PubMed  CAS  Google Scholar 

  34. Huttly AK, Phillips AL (1995) Gibberellin-regulated expression in oat aleurone cells of two kinases that show homology to MAP kinase and a ribosomal protein kinase. Plant Mol Biol 27:1043–1052

    Article  PubMed  CAS  Google Scholar 

  35. Zhang S, Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9:809–824

    Article  PubMed  CAS  Google Scholar 

  36. Zhang S, Liu Y (2001) Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13:1877–1889

    Article  PubMed  CAS  Google Scholar 

  37. Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–795

    Article  PubMed  CAS  Google Scholar 

  38. Yoo SD, Sheen J (2008) MAPK signaling in plant hormone ethylene signal transduction. Plant Signal Behav 3:848–849

    Article  PubMed  Google Scholar 

  39. Seo S, Sano H, Ohashi Y (1999) Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11:289–298

    Article  PubMed  CAS  Google Scholar 

  40. Bogre L, Ligterink W, Meskiene I, Barker PJ, Heberle-Bors E, Huskisson NS, Hirt H (1997) Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell 9:75–83

    Article  PubMed  Google Scholar 

  41. Andreasson E, Ellis B (2010) Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci 15:106–113

    Article  PubMed  CAS  Google Scholar 

  42. Hardin SC, Wolniak SM (1998) Molecular cloning and characterization of maize ZmMEK1, a protein kinase with a catalytic domain homologous to mitogen- and stress-activated protein kinase kinases. Planta 206:577–584

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from the Nation Natural Science Foundation of China (grant numbers: 30871457, 31071337) and the State Key Basic Research and Development Plan of China (grant number: 2009CB118500), and also was supported by the Program for Changjiang Scholars and Innovative Research Team in University (grant number: IRT0635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Quan Li.

Additional information

Tao Wu and Xiang-Pei Kong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T., Kong, XP., Zong, XJ. et al. Expression analysis of five maize MAP kinase genes in response to various abiotic stresses and signal molecules. Mol Biol Rep 38, 3967–3975 (2011). https://doi.org/10.1007/s11033-010-0514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0514-3

Keywords

Navigation