Skip to main content
Log in

Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A monomeric NADP-dependent isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680 (SaIDH) was heteroexpressed in Escherichia coli, and the His-tagged enzyme was further purified to homogeneity. The molecular weight of SaIDH was about 80 kDa which is typical for monomeric isocitrate dehydrogenases. Structure-based sequence alignment reveals that the deduced amino acid sequence of SaIDH shows high sequence identity with known momomeric isocitrate dehydrogenase, and the coenzyme, substrate and metal ion binding sites are completely conserved. The optimal pH and temperature of SaIDH were found to be pH 9.4 and 45°C, respectively. Heat-inactivation studies showed that heating for 20 min at 50°C caused a 50% loss in enzymatic activity. In addition, SaIDH was absolutely specific for NADP+ as electron acceptor. Apparent K m values were 4.98 μM for NADP+ and 6,620 μM for NAD+, respectively, using Mn2+ as divalent cation. The enzyme performed a 33,000-fold greater specificity (k cat/K m) for NADP+ than NAD+. Moreover, SaIDH activity was entirely dependent on the presence of Mn2+ or Mg2+, but was strongly inhibited by Ca2+ and Zn2+. Taken together, our findings implicate the recombinant SaIDH is a divalent cation-dependent monomeric isocitrate dehydrogenase which presents a remarkably high cofactor preference for NADP+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aoshima M, Igarashi Y (2002) Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase. J Bacteriol 190(6):2050–2055

    Article  Google Scholar 

  2. Fedøy A, Yang N, Martinez A, Leiros HKS, Steen IH (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372(1):130–149

    Article  PubMed  Google Scholar 

  3. Jo SH, Son MK, Koh HJ et al (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276(19):16168–16176

    Article  PubMed  CAS  Google Scholar 

  4. Lee SM, Koh HJ, Park DC et al (2002) Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32(11):1185–1196

    Article  PubMed  CAS  Google Scholar 

  5. Kim SY, Park JW (2003) Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radic Res 37(3):309–316

    Article  PubMed  CAS  Google Scholar 

  6. Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324(5924):261–265

    Article  PubMed  CAS  Google Scholar 

  7. Steen IH, Madern D, Karlström M, Lien T, Ladenstein R, Birkeland N (2001) Comparison of isocitrate dehydrogenase from three hyperthermophiles reveals differences in thermostability, cofactor specificity, oligomeric state, and phylogenetic affiliation. J Biol Chem 276(47):43924–43931

    Article  PubMed  CAS  Google Scholar 

  8. Karlström M, Steen IH, Madern D, Fedoy A, Birkeland N, Ladenstein R (2006) The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritime. FEBS J 273(13):2851–2868

    Article  PubMed  Google Scholar 

  9. Zhu GP, Golding GB, Dean AM (2005) The selective cause of an ancient adaptation. Science 307(5713):1279–1282

    Article  PubMed  CAS  Google Scholar 

  10. Stokke R, Karlstrom M, Yang N et al (2007) Thermal stability of isocitrate dehydrogenase from Archaeoglobus fulgidus studied by crystal structure analysis and engineering of chimers. Extremophiles 11(3):481–493

    Article  PubMed  CAS  Google Scholar 

  11. Xu X, Zhao J, Xu Z, Peng B, Huang Q, Arnold E, Ding J (2004) Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem 279(32):33946–33957

    Article  PubMed  CAS  Google Scholar 

  12. Karlström M, Stokke R, Steen IH, Birkeland NK, Ladenstein R (2005) Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme–substrate complex and thermal stability. J Mol Biol 345(3):559–577

    Article  PubMed  Google Scholar 

  13. Sahara T, Takada Y, Takeuchi Y, Yamaoka N, Fukunaga N (2002) Cloning, sequencing, and expression of a gene encoding the monomeric isocitrate dehydrogenase of the nitrogen-fixing bacterium, Azotobacter vinelandii. Biosci Biotechnol Biochem 66(3):489–500

    Article  PubMed  CAS  Google Scholar 

  14. Chung AE, Franzen JS (1969) Oxidized triphosphopyridine nucleotide specific isocitrate dehydrogenase from Azotobacter vinelandii. Biochemistry 8(8):3175–3184

    Article  PubMed  CAS  Google Scholar 

  15. Bai C, Fernandez E, Yang H, Chen RD (1999) Purification and stabilization of a monomeric isocitrate dehydrogenase from Corynebacterium glutamicum. Protein Expr Purif 15(3):344–348

    Article  PubMed  CAS  Google Scholar 

  16. Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177(3):774–782

    PubMed  CAS  Google Scholar 

  17. Chen R, Yang H (2000) A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum. Arch Biochem Biophys 383(2):238–245

    Article  PubMed  CAS  Google Scholar 

  18. Steen IH, Madsen MS, Birkeland NK, Lien T (1998) Purification and characterization of a monomeric isocitrate dehydrogenase from the sulfate-reducing bacterium Desulfobacter vibrioformis and demonstration of the presence of a monomeric enzyme in other bacteria. FEMS Microbiol Lett 160(1):75–79

    Article  PubMed  CAS  Google Scholar 

  19. Leyland ML, Kelly DJ (1991) Purification and characterization of a monomeric isocitrate dehydrogenase with dual coenzyme specificity from the photosynthetic bacterium Rhodomicrobium vannielii. Eur J Biochem 202(1):85–93

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki M, Sahara T, Tsuruha J, Takada Y, Fukunaga N (1995) Differential expression in Escherichia coli of the Vibrio sp. strain ABE-1 icdI and icdII genes encoding structurally different isocitrate dehydrogenase isozymes. J Bacteriol 177(8):2138–2142

    PubMed  CAS  Google Scholar 

  21. Watanabe S, Yasutake Y, Tanaka I, Takada Y (2005) Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. Microbiology 151(4):1083–1094

    Article  PubMed  CAS  Google Scholar 

  22. Ishii A, Suzuki M, Sahara T et al (1993) Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol 175(21):6873–6880

    PubMed  CAS  Google Scholar 

  23. Wang Z, Brämer C, Steinbuchel A (2003) Two phenotypically compensating isocitrate dehydrogenases in Ralstonia eutropha. FEMS Microbiol Lett 227(1):9–16

    Article  PubMed  CAS  Google Scholar 

  24. Maki S, Yoneta M, Takada Y (2006) Two isocitrate dehydrogenases from a psychrophilic bacterium, Colwellia psychrerythraea. Extremophiles 10(3):237–249

    Article  PubMed  CAS  Google Scholar 

  25. Yasutake Y, Watanabe S, Yao M, Takada Y, Fukunaga N, Tanaka I (2003) Crystal structure of the monomeric isocitrate dehydrogenase in the presence of NADP+: insight into the cofactor recognition, catalysis and evolution. J Biol Chem 278(38):36897–36904

    Article  PubMed  CAS  Google Scholar 

  26. Imabayashi F, Aich S, Prasad L, Delbaere L (2006) Substrate-free structure of a monomeric NADP isocitrate dehydrogenase: an open conformation phylogenetic relationship of isocitrate dehydrogenase. Proteins Struct Funct Genet 63:100–112

    Article  PubMed  CAS  Google Scholar 

  27. Yasutake Y, Watanabe S, Yao M, Takada Y, Fukunaga N, Tanaka I (2002) Structure of the monomeric isocitrate dehydrogenase: evidence of a protein monomerization by a domain duplication. Structure 10(12):1637–1648

    Article  PubMed  CAS  Google Scholar 

  28. Ikeda H, Ishikawa J, Hanamoto A et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21(5):526–531

    Article  PubMed  Google Scholar 

  29. Hopwood DA, Bibb MJ, Chater KF et al (1985) Genetic manipulation of streptomyces: a laboratory manual. The John Innes Foundation, Norwich

    Google Scholar 

  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  31. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  32. Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: analysis of multiple sequence alignments in postscript. Bioinformatics 15(4):305–308

    Article  PubMed  CAS  Google Scholar 

  33. Hurley JH, Thorsness PE, Ramalingam V et al (1989) Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci USA 86(22):8635–8639

    Article  PubMed  CAS  Google Scholar 

  34. Hurley JH, Dean AM, Koshland DE Jr, Stroud RM (1991) Catalytic mechanism of NADP+-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry 30(35):8671–8678

    Article  PubMed  CAS  Google Scholar 

  35. Dean AM, Koshland DE Jr (1993) Kinetic mechanism of Escherichia coli isocitrate dehydrogenase. Biochemistry 32(36):9302–9309

    Article  PubMed  CAS  Google Scholar 

  36. Ceccarelli C, Grodsky NB, Ariyaratne N et al (2002) Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate: insights into the enzyme mechanism. J Biol Chem 277(45):43454–43462

    Article  PubMed  CAS  Google Scholar 

  37. Zhang BB, Wang BJ, Wang P, Cao ZY, Huang EQ, Hao JS, Dean AM, Zhu GP (2009) Enzymatic characterization of a monomeric isocitrate dehydrogenase from Streptomyces lividans TK54. Biochemie 91(11–12):1405–1410

    Article  CAS  Google Scholar 

  38. Kanao T, Kawamura M, Fukui T et al (2002) Characterization of isocitrate dehydrogenase from the green sulfur bacterium Chlorobium limicola. Eur J Biochem 269(7):1926–1931

    Article  PubMed  CAS  Google Scholar 

  39. Fukunaga N, Imagawa S, Sahara T, Ishii A, Suzuki M (1992) Purification and characterization of monomeric isocitrate dehydrogenase with NADP+-specificity from Vibrio parahaemolyticus Y-4. J Biochem 112(6):849–855

    PubMed  CAS  Google Scholar 

  40. Reeves HC, Daumy GO, Lin CC, Houston M (1972) NADP+-specific isocitrate dehydrogenase of Escherichia coli. Biochim Biophys Acta 258(1):27–39

    PubMed  CAS  Google Scholar 

  41. Eguchi H, Wakagi T, Oshima T (1989) A highly stable NADP-dependent isocitrate dehydrogenase from Thermus thermophilus HB8: purification and general properties. Biochim Biophys Acta 990(2):133–137

    PubMed  CAS  Google Scholar 

  42. Chen R, Greer A, Dean AM (1995) A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity. Proc Natl Acad Sci USA 92(25):11666–11670

    Article  PubMed  CAS  Google Scholar 

  43. Steen IH, Lien T, Birkeland N (1997) Biochemical and phylogenetic characterization of isocitrate dehydrogenase from a hyperthermophilic archaeon, Archaeoglobus fulgidus. Arch Microbiol 168(5):412–420

    Article  PubMed  CAS  Google Scholar 

  44. Contreras-Shannon V, Lin AP, McCammon MT, McAlister-Henn L (2005) Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases. J Biol Chem 280(6):4469–4475

    Article  PubMed  CAS  Google Scholar 

  45. Yoon J, Hattori T, Shimada M (2002) Purification and characterization of NADP-linked isocitrate dehydrogenase from the copper-tolerant wood-rotting basidiomycete Fomitopsis palustris. Biosci Biotechnol Biochem 67(1):114–120

    Article  Google Scholar 

  46. Stoddard BL, Dean AM, Koshland DE Jr (1993) Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5 Å resolution: a pseudo-michaelis ternary complex. Biochemistry 32(36):9310–9316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funds from the National Natural Science Foundation of China (30500300; 30870062; 31040003), New Century Excellent Talents in University of the Education Ministry of China (NCET-06-0558), Scientific Research Foundation for the Returned Overseas Chinese Scholars from State Education Ministry, the Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province and Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Cao, ZY., Wang, P. et al. Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680. Mol Biol Rep 38, 3717–3724 (2011). https://doi.org/10.1007/s11033-010-0486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0486-3

Keywords

Navigation