Skip to main content
Log in

Thermal stability of isocitrate dehydrogenase from Archaeoglobus fulgidus studied by crystal structure analysis and engineering of chimers

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Isocitrate dehydrogenase from Archaeoglobus fulgidus (AfIDH) has an apparent melting temperature (T m) of 98.5°C. To identify the structural features involved in thermal stabilization of AfIDH, the structure was solved to 2.5 Å resolution. AfIDH was strikingly similar to mesophilic IDH from Escherichia coli (EcIDH) and displayed almost the same number of ion pairs and ionic networks. However, two unique inter-domain networks were present in AfIDH; one three-membered ionic network between the large and the small domain and one four-membered ionic network between the clasp and the small domain. The latter ionic network was presumably reduced in size when the clasp domain of AfIDH was swapped with that of EcIDH and the T m decreased by 18°C. Contrarily, EcIDH was only stabilized by 4°C by the clasp domain of AfIDH, a result probably due to the introduction of a unique inter-subunit aromatic cluster in AfIDH that may strengthen the dimeric interface in this enzyme. A unique aromatic cluster was identified close to the N-terminus of AfIDH that could provide additional stabilization of this region. Common and unique heat adaptive traits of AfIDH with those recently observed for hyperthermophilic IDH from Aeropyrum pernix (ApIDH) and Thermotoga maritima (TmIDH) are discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IDH:

Isocitrate dehydrogenase

GDH:

Glutamate dehydrogenase

ApIDH:

Aeropyrum pernix IDH

EcIDH:

Escherichia coli IDH

BsIDH:

Bacillus subtilis IDH

TmIDH:

Thermotoga maritima IDH

AfIDH:

Archaeoglobus fulgidus IDH

PfIDH:

Pyrococcus furiosus IDH

T m :

Melting temperature

References

  • Bell GS, Russell RJM, Connaris H, Hough DW, Danson MJ, Taylor GL (2002) Stepwise adaptations of citrate synthase to survival at life’s extremes. From psychrophile to hyperthermophile. Eur J Biochem 269:6250–6260

    Article  PubMed  CAS  Google Scholar 

  • Bhuiya MW, Sakuraba H, Ohshima T, Imagawa T, Katunuma N, Tsuge H (2005) The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum. J Mol Biol 345:325–337

    Article  PubMed  CAS  Google Scholar 

  • Blöchl E, Burggraf S, Fiala G, Lauerer G, Huber G, Huber R, Rachel R, Segerer A, Stetter KO, Völkl P (1995) Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:9–16

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248–254

    Article  Google Scholar 

  • Britton KL, Yip KSP, Sedelnikova SE, Stillman TJ, Adams MWW, Ma K, Maeder DL, Robb FT, Tolliday N, Vetriani C (1999) Structure determination of the glutamate dehydrogenase from the hyperthermophile Thermococcus litoralis and its comparison with that from Pyrococcus furiosus. J Mol Biol 293:1121–1132

    Article  PubMed  CAS  Google Scholar 

  • Cary SC, Shank T, Stein J (1998) Worms bask in extreme temperatures. Nature 391:545–546

    Article  CAS  Google Scholar 

  • CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763

    Google Scholar 

  • Ceccarelli C, Grodsky NB, Ariyaratne N, Colman RF, Bahnson BJ (2002) Crystal structure of Porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism. J Biol Chem 277:43454–43462

    Article  PubMed  CAS  Google Scholar 

  • Dalhus B, Saarinen M, Sauer UH, Eklund P, Johansson K, Karlsson A, Ramaswamy S, Bjork A, Synstad B, Naterstad K (2002) Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases. J Mol Biol 318:707–721

    Article  PubMed  CAS  Google Scholar 

  • Dean AM, Koshland DE Jr (1993) Kinetic mechanism of Escherichia coli isocitrate dehydrogenase. Biochemistry 32:9302–9309

    Article  PubMed  CAS  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in postscript. Bioinformatics 15:305–308

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  • Hurley JH, Thorsness PE, Ramalingam V, Helmers NH, Koshland DEJ, Stroud RM (1989) Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci USA 86:8635–8639

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr A 47:110–119

    Article  PubMed  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kannan N, Vishveshwara S (2000) Aromatic clusters: a determinant of thermal stability of thermophilic proteins. Protein Eng 13:753–761

    Article  PubMed  CAS  Google Scholar 

  • Karlström M, Stokke R, Steen IH, Birkeland NK, Ladenstein R (2005) Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability. J Mol Biol 345:559–577

    Article  PubMed  CAS  Google Scholar 

  • Karlström M, Steen IH, Madern D, Fedoy AE, Birkeland NK, Ladenstein R (2006) The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. FEBS J 273:2851–2868

    Article  PubMed  CAS  Google Scholar 

  • Karshikoff A, Ladenstein R (2001) Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends Biochem Sci 26:550–556

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, de Vos WM, Rice D, Ladenstein R (1997) Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 A resolution. J Mol Biol 267:916–932

    Article  PubMed  CAS  Google Scholar 

  • Leslie AGW (1992) Joint CCP4 and ESF-EACMB. Newslett Protein Crystallogr 27–33

  • Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr 55:247–255

    Article  PubMed  CAS  Google Scholar 

  • PyMol (2005) DeLano Scientific, 0.98 ed, California, USA

  • Russell RB, Barton GJ (1992) Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins 14:309–323

    Article  PubMed  CAS  Google Scholar 

  • Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degrees C. Int J Syst Bacteriol 46:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC (2000) Protein stability in extremophilic archaea. Front Biosci 5:d787–d795

    PubMed  CAS  Google Scholar 

  • Singh SK, Matsuno K, LaPorte DC, Banaszak LJ (2001) Crystal structure of Bacillus subtilis isocitrate dehydrogenase at 1.55 Å. Insights into the nature of substrate specificity exhibited by Escherichia coli isocitrate dehydrogenase kinase/phosphatase. J Biol Chem 276:26154–26163

    Article  PubMed  CAS  Google Scholar 

  • Spassov VZ, Ladenstein R, Karshikoff AD (1997) Optimization of the electrostatic interactions between ionized groups and peptide dipoles in proteins. Protein Sci 6:1190–1196

    Article  PubMed  CAS  Google Scholar 

  • Steen IH, Lien T, Birkeland NK (1997) Biochemical and phylogenetic characterization of isocitrate dehydrogenase from a hyperthermophilic archaeon, Archaeoglobus fulgidus. Arch Microbiol 168:412–420

    Article  PubMed  CAS  Google Scholar 

  • Steen IH, Madern D, Karlström M, Lien T, Ladenstein R, Birkeland NK (2001) Comparison of isocitrate dehydrogenase from three hyperthermophiles reveals differences in thermostability, cofactor specificity, oligomeric state, and phylogenetic affiliation. J Biol Chem 276:43924–43931

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1999) Extremophiles and their adaptation to hot environments. FEBS Lett 452:22–25

    Article  PubMed  CAS  Google Scholar 

  • Stoddard BL, Dean A, Koshland DE (1993) Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine-dinucleotide phosphate, and calcium at 2.5 Å resolution: a pseudo-michaelis ternary complex. Biochemistry 32:9310–9316

    Article  PubMed  CAS  Google Scholar 

  • Vetriani C, Maeder DL, Tolliday N, Yip KSP, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT (1998) Protein thermostability above 100°C: a key role for ionic interactions. Proc Natl Acad Sci USA 95:12300–12305

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, andmolecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  • Warrens AN, Jones MD, Lechler RI (1997) Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 186:29–35

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Honig B (1999) Electrostatic contributions to the stability of hyperthermophilic proteins. J Mol Biol 289:1435–1444

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Zhao J, Xu Z, Peng B, Huang Q, Arnold E, Ding J (2004) Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem 279:33946–33957

    Article  PubMed  CAS  Google Scholar 

  • Yip K, Stillman T, Britton K, Artymiuk P, Baker P, Sedelnikova S, Engel P, Pasquo A, Chiaraluce R, Consalvi V (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3:1147–1158

    Article  PubMed  CAS  Google Scholar 

  • Yip KSP, Britton KL, Stillman TJ, Lebbink J, de Vos WM, Robb FT, Vetriani C, Maeder D, Rice DW (1998) Insights into the molecular basis of thermal stability from the analysis of ion-pair networks in the glutamate dehydrogenase family. Eur J Biochem 255:336–346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Norwegian Research Council (Project no. 153774/420). The Norwegian Structural Biology Centre (NorStruct) is supported by the national Functional Genomics Programme (FUGE) of the Research Council of Norway. Provision of beamtime at the Swiss Light Source is gratefully acknowledged. We are grateful to Prof. Aurora Martinez, Department of Biomedicine, University of Bergen, for access to her laboratory facilities and expertise in use of differential scanning calorimetry. The excellent laboratory skills of Lisbeth Glærum and Marit Steine Madsen are also much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Helene Steen.

Additional information

Communicated by G. Antranikian.

Enzyme EC number: (EC 1.1.1.42)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stokke, R., Karlström, M., Yang, N. et al. Thermal stability of isocitrate dehydrogenase from Archaeoglobus fulgidus studied by crystal structure analysis and engineering of chimers. Extremophiles 11, 481–493 (2007). https://doi.org/10.1007/s00792-006-0060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0060-z

Keywords

Navigation