Skip to main content
Log in

Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Arabidopsis gene FRO6(AtFRO6) encodes ferric chelate reductase and highly expressed in green tissues of plants. We have expressed the gene AtFRO6 under the control of a 35S promoter in transgenic tobacco plants. High-level expression of AtFRO6 in transgenic plants was confirmed by northern blot analysis. Ferric reductase activity in leaves of transgenic plants grown under iron-sufficient or iron-deficient conditions is 2.13 and 1.26 fold higher than in control plants respectively. The enhanced ferric reductase activity led to increased concentrations of ferrous iron and chlorophyll, and reduced the iron deficiency chlorosis in the transgenic plants, compared to the control plants. In roots, the concentration of ferrous iron and ferric reductase activity were not significantly different in the transgenic plants compared to the control plants. These results suggest that FRO6 functions as a ferric chelate reductase for iron uptake by leaf cells, and overexpression of AtFRO6 in transgenic plants can reduce iron deficiency chlorosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110

    Article  PubMed  CAS  Google Scholar 

  2. Feng H, An F, Zhang S, Ji Z, Ling HQ, Zuo J (2006) Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6. Plant Physiol 140:1345–1354

    Article  PubMed  CAS  Google Scholar 

  3. Landsberg EC (1984) Regulation of iron-stress-response by whole-plant activity. J Plant Nutr 7:609–621

    Article  CAS  Google Scholar 

  4. Terry N, Abadia J (1986) Function of iron in chloroplasts. J Plant Nutr 9:609–646

    Article  CAS  Google Scholar 

  5. Miller GW, Huang IJ, Welkie GW, ve Pushnik JC (1995) Function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In: Abadia J (ed) Iron nutrition in soils and plants. Kluwer Academic Publisher, Netherlands, pp 19–28

    Google Scholar 

  6. Bughio N, Takahashi M, Yoshimura E, Nishizawa NK, Mori S (1997) Light-dependent iron transport into isolated barely chloroplasts. Plant Cell Physiol 116:1063–1072

    Google Scholar 

  7. Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    Article  PubMed  CAS  Google Scholar 

  8. Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. FEBS Lett 307:108–112

    Article  PubMed  CAS  Google Scholar 

  9. Briat JF, Lebrum M (1999) Plant responses to metal toxicity. C R Acad Sci III 322:43–54

    PubMed  CAS  Google Scholar 

  10. Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  11. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  PubMed  CAS  Google Scholar 

  12. Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  PubMed  CAS  Google Scholar 

  13. Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci USA 88:8222–8226

    Article  PubMed  CAS  Google Scholar 

  14. Briat JF, Lobréaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2:187–193

    Article  Google Scholar 

  15. Wei J, Theil EC (2000) Identification and characterization of the iron regulatory element in the ferritin gene of a plant (soybean). J Biol Chem 275:17488–17493

    Article  PubMed  CAS  Google Scholar 

  16. Puig S, Andrés-colás N, García-molina A, Peñarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290

    Article  PubMed  CAS  Google Scholar 

  17. Stocking CR (1975) Iron deficiency and the structure and physiology of maize chloroplasts. Plant Physiol 55:626–631

    Article  PubMed  CAS  Google Scholar 

  18. Spiller S, Terry N (1980) Limiting factors in photosynthesis II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. Plant Physiol 65:121–125

    Article  PubMed  CAS  Google Scholar 

  19. Terry N (1980) Limiting factors in photosynthesis I: use of iron stress to control photochemical capacity in vivo. Plant Physiol 65:114–120

    Article  PubMed  CAS  Google Scholar 

  20. Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed  Google Scholar 

  21. Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    PubMed  CAS  Google Scholar 

  22. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  PubMed  CAS  Google Scholar 

  23. Brüggemann W, Maas-Kantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta 190:151–155

    Article  Google Scholar 

  24. Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ (2005) Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol 46:1505–1514

    Article  PubMed  CAS  Google Scholar 

  25. Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190

    Article  PubMed  CAS  Google Scholar 

  26. Vasconcelos M, Eckert H, Arahana V, Graef G, Grusak MA, Clemente T (2006) Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta 224:1116–1128

    Article  PubMed  CAS  Google Scholar 

  27. Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci 176:709–714

    Article  CAS  Google Scholar 

  28. Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA 105:10619–10624

    Article  PubMed  CAS  Google Scholar 

  29. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  30. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  31. Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10:835–844

    Article  PubMed  CAS  Google Scholar 

  32. Wuytswinkel OV, Vansuyt G, Grignon N, Fourcroy P, Briat JF (1998) Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J 17:93–97

    Article  Google Scholar 

  33. Nagahara T, Iwao H, Kubo A (1983) The methods of food analysis. Shibada book store, pp 163–165

  34. Takkar PN, Kaur NP (1984) HCI method for Fe2+ estimation to resolve iron chlorosis in plants. J Plant Nutr 7:81–90

    Article  CAS  Google Scholar 

  35. Johnston M, Grof CPL, Brownell PF (1984) Effect of sodium nutrition on chlorophyll a/b ratios in C4 plants. Aust J Plant Physiol 11:325–332

    CAS  Google Scholar 

  36. Pierson EE, Clark RB (1984) Ferrous iron determination in plant tissue. J Plant Nutr 7:107–116

    Article  CAS  Google Scholar 

  37. Römheld V, Marschner H (1983) Mechanism of iron uptake by peanut plants: I. Fe3+ reduction, chelate splitting, and release of phenolics. Plant Physiol 71:949–954

    Article  PubMed  Google Scholar 

  38. Tiffin LO (1970) Translocation of iron citrate and phosphorus in xylem exudate of soybean. Plant Physiol 45:280–283

    Article  PubMed  CAS  Google Scholar 

  39. de la Guardia MD, Alcántara E (1996) Ferric chelate reduction by sunflower (Helianthus annuus L.) leaves: influence of light, oxygen, iron-deficiency and leaf age. J Exp Bot 47:669–675

    Article  Google Scholar 

  40. Varsano T, Wolf SG, Pick U (2006) A chlorophyll a/b binding protein homolog that is induced by iron deficiency is associated with enlarged photosystem I units in the eucaryotic alga Dunaliella salina. J Biol Chem 281:10305–10315

    Article  PubMed  CAS  Google Scholar 

  41. Agarwala SC, Sharma CP, Farooq S (1965) Effect of iron supply on growth, chlorophyll, tissue iron and activity of certain enzymes in maize and radish. Plant Physiol 40:493–499

    Article  PubMed  CAS  Google Scholar 

  42. Miller GW, Pushnik JC (1983) Iron chlorosis, the role of iron in chlorophyll formation. Utah Sci 44:99–103

    Google Scholar 

Download references

Acknowledgments

We thank Dr E. L. Connolly of University of South Carolina for supplying the plasmid pBlu/AtFRO6. The research was supported by National Natural Science Foundation(30970552); Foundation for Key Teachers from Heilongjiang Educational Committee(1005HQ024); Natural Science Foundation of Heilongjiang Province of China(C2005-07) and Scientific Research Foundation for Returned Scholars, Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, LY., Cai, QY., Yu, DS. et al. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis. Mol Biol Rep 38, 3605–3613 (2011). https://doi.org/10.1007/s11033-010-0472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0472-9

Keywords

Navigation