Skip to main content

Advertisement

Log in

Proteomics-based analysis of novel genes involved in response toward soybean mosaic virus infection

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Soybean mosaic virus (SMV) is one of the most serious virus diseases of soybean. However, little is known about the molecular basis of the soybean defense mechanism against this pathogen. We identified differentially expressed proteins in soybean leaves infected with SMV by proteomic approaches. Twenty-eight protein spots that showed ≥2-fold difference in intensity were identified between mock-inoculated and SMV-infected samples. Among them, 16 spots were upregulated and 12 spots were downregulated in the SMV-infected samples. We recovered 25 of the 28 differentially expressed proteins from two-dimensional electrophoresis (2-DE) gels. These spots were identified as 16 different proteins by Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and tandem TOF/TOF MS, and were potentially involved in protein degradation, defense signal transfer, reactive oxygen, cell wall reinforcement, and energy and metabolism regulation. Gene expression analysis of 13 genes by quantitative real time polymerase chain reaction (qRT–PCR) showed that metabolism genes and photosynthesis genes were downregulated at all time points. One energy gene was downregulated, whereas another energy gene was upregulated at five of the six time points. The other interesting genes that were altered by SMV infection showed changes in transcription over time. This is the first extensive application of proteomics to the SMV-soybean interaction. These results contribute to a better understanding of the molecular basis of soybean’s responses to SMV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Du QL, Cui WZ, Zhang CH, Yu DY (2010) GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean (Glycine max). Mol Biol Rep 37(2):685–693

    Article  CAS  PubMed  Google Scholar 

  2. Hartman G L, Sinclair J B, Rupe J C (1999) Compendium of soybean diseases, vol i–vi, 4th edn. APS Press, St. Paul, pp 1–100

  3. Gardner MW, Kendrick H (1921) Soybean mosaic. J Agric Res 22:111–114

    Google Scholar 

  4. Zheng C, Chen P, Gergerich R (2005) Characterization of resistance to Soybean mosaic virus in diverse soybean germplasm. Crop Sci 45:2503–2509

    Article  Google Scholar 

  5. Liao L, Chen P, Buss GR, Yang Q, Tolin SA (2002) Inheritance and allelism of resistance to Soybean mosaic virus in Zao18 soybean from China. J Hered 93:447–452

    Article  CAS  PubMed  Google Scholar 

  6. Babu M, Gagarinova A, Brandle J, Wang A (2008) Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection. J Gen Virol 89:1069–1080

    Article  CAS  PubMed  Google Scholar 

  7. Casado-Vela J, Selles S, Martinez R (2006) Proteomic analysis of tobacco mosaic virus-infected tomato (Lycopersicon esculentum M.) fruits and detection of viral coat protein. Proteomics 6:S196–S206

    Article  PubMed  Google Scholar 

  8. Golem S, Culver J (2003) Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe Interact 16:681–688

    Article  CAS  PubMed  Google Scholar 

  9. Liu Z, Yang X, Fu Y, Zhang Y, Yan J, Song T, Rocheford T, Li J (2009) Proteomic analysis of early germs with high-oil and normal inbred lines in maize. Mol Biol Rep 36(4):813–821

    Article  CAS  PubMed  Google Scholar 

  10. Zhu H, Bi YD, Yu LJ, Guo DD, Wang BC (2009) Comparative proteomic analysis of apomictic monosomic addition line of Beta corolliflora and Beta vulgaris L. in sugar beet. Mol Biol Rep 36(8):2093–2098

    Article  CAS  PubMed  Google Scholar 

  11. Ni RJ, Shen Z, Yang CP, Wu YD, Bi YD, Wang BC (2010) Identification of low abundance polyA-binding proteins in Arabidopsis chloroplast using polyA-affinity column. Mol Biol Rep 37(2):637–641

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    Article  PubMed  Google Scholar 

  13. Ventelon-Debout M, Delalande F, Brizard J, Diemer H, Van Dorsselaer A, Brugidou C (2004) Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics 4:216–225

    Article  CAS  PubMed  Google Scholar 

  14. Xu C, Sullivan J, Garrett W, Caperna T, Natarajan S (2008) Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry 69:38–48

    Article  CAS  PubMed  Google Scholar 

  15. Guo D, Zhi H, Wang Y, Gai J, Zhou X, Yang C (2005) Identification and distribution of strains of soybean mosaic virus in middle and northern of Huang Huai Region of China. Soybean Sci 27:64–68

    Google Scholar 

  16. Sun XC, Hu CX, Tan QL (2006) Effects of molybdenum on antioxidative defense system and membrane lipid peroxidation in winter wheat under low temperature stress. J Plant Physiol Mol 32:175–182

    CAS  Google Scholar 

  17. Alferez F, Pozo L, Burns J (2006) Physiological changes associated with senescence and abscission in mature citrus fruit induced by 5-chloro-3-methyl-4-nitro-1H-pyrazole and ethephon application. Physiol Plant 127:66–73

    Article  CAS  Google Scholar 

  18. Natarajan S, Xu CP, Caperna TJ, Garret WA (2005) Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Anal Biochem 342:214–220

    Article  CAS  PubMed  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  20. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672

    Article  CAS  PubMed  Google Scholar 

  21. Pennazio S, Sapetti C (1982) Electrolyte leakage in relation to viral and abiotic stresses inducing necrosis in cowpea leaves. Biologia Plantarum 24:218–225

    Article  CAS  Google Scholar 

  22. Odlum KD, Blake TJ (1996) A comparison of analytical approaches for assessing freezing damage in black spruce using electrolyte leakage methods. Can J Bot 74:952–958

    Article  Google Scholar 

  23. Bevan M, Bancroft I, Bent E et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  CAS  PubMed  Google Scholar 

  24. Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Article  CAS  PubMed  Google Scholar 

  25. Van Loon L (1987) Disease induction by plant viruses. Adv Virus Res 33:205–256

    Article  PubMed  Google Scholar 

  26. Portis A, Parry M (2007) Discoveries in Rubisco (ribulose 1, 5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth Res 94:121–143

    Article  CAS  PubMed  Google Scholar 

  27. Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupianez JA, Del Rio LA (1999) Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol 121:921–928

    Article  CAS  PubMed  Google Scholar 

  28. Devenish RJ, Prescott M, Roucou X, Nagley P (2000) Insights into ATP synthase assembly and function through the molecular genetic manipulation of subunits of the yeast mitochondrial enzyme complex. Biochim Biophys Acta 1458:428–442

    Article  CAS  PubMed  Google Scholar 

  29. Jia Y, Xue L, Li J, Liu H (2010) Isolation and proteomic analysis of the halotolerant alga Dunaliella salina flagella using shotgun strategy. Mol Biol Rep 37(2):711–716

    Article  CAS  PubMed  Google Scholar 

  30. Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N, Zamzami N, Jan G, Kroemer G, Brenner C (2007) GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene 26:2606–2620

    Article  CAS  PubMed  Google Scholar 

  31. Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  32. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  33. Shadle G, Wesley S, Korth K, Chen F, Lamb C, Dixon R (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64:153–161

    Article  CAS  PubMed  Google Scholar 

  34. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  35. Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    Article  PubMed  Google Scholar 

  36. Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  Google Scholar 

  37. Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  38. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  PubMed  Google Scholar 

  39. Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229–260

    Article  CAS  PubMed  Google Scholar 

  40. Croft K, Juttner F, Slusarenko A (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Am Soc Plant Biol 101:13–24

    CAS  Google Scholar 

  41. Rusterucci C, Montillet JL, Agnel JP et al (1999) Involvement of lipoxygenase dependent production of fatty acid hydroperoxides in the dependent production of the hypersensitive cell death induced by cryptogein on tobacco leaves. J Biol Chem 274:36446–36447

    Article  CAS  PubMed  Google Scholar 

  42. Li LY, Cheng H, Gai JY, Yu DY (2007) Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula. Planta 226:109–123

    Article  CAS  PubMed  Google Scholar 

  43. Morant M, Bak S, Moller BL, Werck-Rsichhart D (2003) Plant cytochrome P450: tool for pharmacology, plant protection and phytoremediation. Curr Opin Biotech 14:151–162

    Article  CAS  PubMed  Google Scholar 

  44. Senthil K, Wasnik NG, Kim YJ, Yang DC (2009) Generation and analysis of expressed sequence tags from leaf and root of Withania somnifera (Ashwgandha). Mol Biol Rep 37(2):893–902

    Article  PubMed  Google Scholar 

  45. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  CAS  PubMed  Google Scholar 

  46. Sullivan J, Shirasu K, Deng X (2003) The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 4:948–958

    Article  CAS  PubMed  Google Scholar 

  47. Reichel C, Beachy R (2000) Degradation of tobacco mosaic virus movement protein by the 26S proteasome. J Virol 74:3330–3337

    Article  CAS  PubMed  Google Scholar 

  48. Suty L, Lequeu J, Lanon A, Etienne P, Petitot A, Blein J (2003) Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of “plant defense proteasomes”. Int J Biochem Cell Biol 35:637–650

    Article  CAS  PubMed  Google Scholar 

  49. Ballut L, Drucker M, Pugniere M et al (2005) Hc-Pro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. J Gen Virol 86:2595–2603

    Article  CAS  PubMed  Google Scholar 

  50. Droillard MJ, Guclu J, LeCaer JP, Mathieu Y, Guern J, Lauriere C (1997) Identification of calreticulin-like protein as one of the phosphoproteins modulated in response to oligogalacturonides in tobacco cells. Planta 202:341–348

    Article  CAS  PubMed  Google Scholar 

  51. Denecke J, Carlsson L, Vidal S, Hoglund A, Ek B, Van Zeijl M, Sinjorgo K, Palva E (1995) The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7:391–406

    Article  CAS  PubMed  Google Scholar 

  52. Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138:1866–1876

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National 973 Project (No.2010CB125906), National 863 Project (No. 2008AA10Z153), and the National Natural Science Foundation of China (No.30771362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyue Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Huang, Y., Zhi, H. et al. Proteomics-based analysis of novel genes involved in response toward soybean mosaic virus infection. Mol Biol Rep 38, 511–521 (2011). https://doi.org/10.1007/s11033-010-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0135-x

Keywords

Navigation