Skip to main content
Log in

GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean (Glycine max)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

RING-finger proteins with E3 ubiquitin ligase activity play important roles in the regulation of plant growth and development. In this study, a cDNA clone encoding a novel RING-finger protein, designated as GmRFP1, was isolated and characterized from soybean. GmRFP1 was an intronless gene encoding a predicted protein product of 392 amino acid residues with a molecular mass of ~43 kDa. The protein contained a RING-H2 motif and an N-terminal transmembrane domain. The transcript was observed in all detected organs and was up-regulated by abscisic acid (ABA) and salt stress, but down-regulated by cold and drought treatments. We further expressed and purified both wild type and mutant version of GmRFP1 in E. coli. In vitro assays showed that the purified GmRFP1 induced the formation of polyubiquitin chains while mutation within the RING-finger region abolished the ubiquitination activity. These findings suggest that GmRFP1 is a previously unknown E3 ubiquitin ligase in soybean and that the RING domain is required for its activity. It may play unappreciated roles in ABA signaling and stress responses via mediating the ubiquitination and degradation of target proteins through the ubiquitin-proteasome pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RING:

Really interesting new gene

GmRFP1:

Glycine max RING-finger protein 1

Ub:

Ubiquitin

E1:

Ubiquitin-activating enzyme

E2:

Ubiquitin-conjugating enzyme

E3:

Ubiquitin-protein ligase

HECT:

Homology to E6-AP carboxy terminus

SCF:

Skp1-Cullin-F-box

APC:

Anaphase-promoting complex

ABA:

Abscisic acid

SAM:

Shoot apical meristem

DAF:

Days after flowering

RT:

Reverse transcription

qRT-PCR:

Quantitative real-time polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

PEG:

Polyethylene glycol

GST:

Glutathione S-transferase

IPTG:

Isopropyl-1-thio-β-D-galactopyranoside

PBS:

Phosphate buffered saline

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Xu R, Li QQ (2003) A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol 53:37–50. doi:10.1023/B:PLAN.0000009256.01620.a6

    Article  CAS  PubMed  Google Scholar 

  2. Chen H, Shen Y, Tang X, Yu L, Wang J, Guo L, Zhang Y, Zhang H, Feng S, Strickland E, Zheng N, Deng XW (2006) Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18(8):1991–2004. doi:10.1105/tpc.106.043224

    Article  CAS  PubMed  Google Scholar 

  3. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479. doi:10.1146/annurev.biochem.67.1.425

    Article  CAS  PubMed  Google Scholar 

  4. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  PubMed  Google Scholar 

  5. Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F (2001) Ubiquitylation in plants: a postgenomic look at a post-translational modification. Trends Plant Sci 6:463–470. doi:10.1016/S1360-1385(01)02080-5

    Article  CAS  PubMed  Google Scholar 

  6. Stone SL, Callis J (2007) Ubiquitin ligases mediate growth and development by promoting protein death. Curr Opin Plant Biol 10:624–632. doi:10.1016/j.pbi.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  7. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286. doi:10.1073/pnas.0602874103

    Article  CAS  PubMed  Google Scholar 

  8. Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30. doi:10.1104/pp.104.052423

    Article  CAS  PubMed  Google Scholar 

  9. Barlow PN, Luisi B, Milner A, Elliott M, Everett R (1994) Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy: a new structural class of zinc-finger. J Mol Biol 237:201–211. doi:10.1006/jmbi.1994.1222

    Article  CAS  PubMed  Google Scholar 

  10. Borden KL (2000) RING domains: master builders of molecular scaffolds? J Mol Biol 295:1103–1112. doi:10.1006/jmbi.1999.3429

    Article  CAS  PubMed  Google Scholar 

  11. Borden KL, Boddy MN, Lally J, O’Reilly NJ, Martin S, Howe K, Solomon E, Freemont PS (1995) The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 14:1532–1541

    CAS  PubMed  Google Scholar 

  12. Lovering R, Hanson IM, Borden KL, Martin S, O’Reilly NJ, Evan GI, Rahman D, Pappin DJ, Trowsdale J, Freemont PS (1993) Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 90:2112–2116. doi:10.1073/pnas.90.6.2112

    Article  CAS  PubMed  Google Scholar 

  13. Hewitt EW, Duncan L, Mufti D, Baker J, Stevenson PG, Lehner PJ (2002) Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J 21:2418–2429. doi:10.1093/emboj/21.10.2418

    Article  CAS  PubMed  Google Scholar 

  14. Dasgupta A, Ramsey KL, Smith JS, Auble DT (2004) Sir antagonist 1 (San1) is a ubiquitin ligase. J Biol Chem 279:26830–26838. doi:10.1074/jbc.M400894200

    Article  CAS  PubMed  Google Scholar 

  15. Albert TK, Hanzawa H, Legtenberg YI, de Ruwe MJ, van den Heuvel FA, Collart MA, Boelens R, Timmers HT (2002) Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO J 21:355–364. doi:10.1093/emboj/21.3.355

    Article  CAS  PubMed  Google Scholar 

  16. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630. doi:10.1038/ng2014

    Article  CAS  PubMed  Google Scholar 

  17. Freemont PS (1993) The RING finger. a novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci 684:174–192. doi:10.1111/j.1749-6632.1993.tb32280.x

    Article  CAS  PubMed  Google Scholar 

  18. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369. doi:10.1073/pnas.96.20.11364

    Article  CAS  PubMed  Google Scholar 

  19. Borden KL, Freemont PS (1996) The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol 6:395–401. doi:10.1016/S0959-440X(96)80060-1

    Article  CAS  PubMed  Google Scholar 

  20. Saurin AJ, Borden KL, Boddy MN, Freemont PS (1996) Does this have a familiar RING? Trends Biochem Sci 21:208–214

    CAS  PubMed  Google Scholar 

  21. Kosarev P, Mayer KF, Hardtke CS (2002) Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol 3:RESEARCH0016

    Google Scholar 

  22. Holm M, Ma LG, Qu LJ, Deng XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16:1247–1259. doi:10.1101/gad.969702

    Article  CAS  PubMed  Google Scholar 

  23. Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–999. doi:10.1038/nature01696

    Article  CAS  PubMed  Google Scholar 

  24. Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466. doi:10.1038/35013076

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17:804–821. doi:10.1105/tpc.104.030205

    Article  CAS  PubMed  Google Scholar 

  26. Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW (2002) Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J 30:385–394. doi:10.1046/j.1365-313X.2002.01298.x

    Article  CAS  PubMed  Google Scholar 

  27. Matsuda N, Suzuki T, Tanaka K, Nakano A (2001) Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J Cell Sci 114:1949–1957

    CAS  PubMed  Google Scholar 

  28. Xie Q, Guo HS, Dallman G, Fang SY, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167–170. doi:10.1038/nature00998

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Garreton V, Chua NH (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543. doi:10.1101/gad.1318705

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19(6):1912–1929. doi:10.1105/tpc.106.048488

    Article  CAS  PubMed  Google Scholar 

  31. Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J (2006) Keep on going, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415–3428. doi:10.1105/tpc.106.046532

    Article  CAS  PubMed  Google Scholar 

  32. Cao Y, Dai Y, Cui S, Ma L (2008) Histone H2B monoubiquitination in the chromatin of flowering locus C regulates flowering time in Arabidopsis. Plant Cell 20:2586–2602. doi:10.1105/tpc.108.062760

    Article  CAS  PubMed  Google Scholar 

  33. Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen WH (2009) The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J 57:279–288. doi:10.1111/j.1365-313X.2008.03684.x

    Article  CAS  PubMed  Google Scholar 

  34. Gu X, Jiang D, Wang Y, Bachmair A, He Y (2009) Repression of the floral transition via histone H2B monoubiquitination. Plant J 57:522–533. doi:10.1111/j.1365-313X.2008.03709.x

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Zhang Y, Qin G, Tsuge T, Sakaguchi N, Luo G, Sun K, Shi D, Aki S, Zheng N, Aoyama T, Oka A, Yang W, Umeda M, Xie Q, Gu H, Qu LJ (2008) Targeted degradation of cyclin-dependent kinase inhibitor ICK4/KRP6 by the RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell 20:1538–1554. doi:10.1105/tpc.108.059741

    Article  CAS  PubMed  Google Scholar 

  36. Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A–interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell 20:1693–1707. doi:10.1105/tpc.107.057380

    Article  CAS  PubMed  Google Scholar 

  37. Kawasaki T, Nam J, Boyes DC, Holt BF, Hubert DA, Wiig A, Dang JL (2005) A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant J 44:258–270. doi:10.1111/j.1365-313X.2005.02525.x

    Article  CAS  PubMed  Google Scholar 

  38. Serrano M, Guzmán P (2004) Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics 167(2):919–929. doi:10.1534/genetics.104.028043

    Article  CAS  PubMed  Google Scholar 

  39. Dhawan R, Luo H, Foerster AM, Qamar SA, Du HN, Briggs SD, Scheid OM, Mengiste T (2009) Histone monoubiquitination1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell. doi:10.1105/tpc.108.062364

    PubMed  Google Scholar 

  40. Molnar G, Bancos S, Nagy F, Szekeres M (2002) Characterisation of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta 215:127–133. doi:10.1007/s00425-001-0723-z

    Article  CAS  PubMed  Google Scholar 

  41. Weising K, Atkinson RG, Gardner RC (1995) Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation. PCR Methods Appl 4:249–255

    CAS  PubMed  Google Scholar 

  42. Huang F, Chi YJ, Meng QC, Gai JY, Yu DY (2006) GmZFP1 encoding a single zinc finger protein is expressed with enhancement in reproductive organs and late seed development in soybean (Glycine max). Mol Biol Rep 33:279–285. doi:10.1007/s11033-006-9012-z

    Article  CAS  PubMed  Google Scholar 

  43. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  44. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NewYork

    Google Scholar 

  45. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  46. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  47. Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD (2000) The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10:429–439. doi:10.1016/S0962-8924(00)01834-1

    Article  CAS  PubMed  Google Scholar 

  48. Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552. doi:10.1016/S0092-8674(00)00077-5

    Article  CAS  PubMed  Google Scholar 

  49. Smalle J, Vierstra RD (2004) The ubiquitin 26 s proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590. doi:10.1146/annurev.arplant.55.031903.141801

    Article  CAS  PubMed  Google Scholar 

  50. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599. doi:10.1146/annurev.arplant.50.1.571

    Article  CAS  PubMed  Google Scholar 

  51. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. doi:10.1016/S1369-5266(03)00092-X

    Article  CAS  PubMed  Google Scholar 

  52. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329

    Article  CAS  PubMed  Google Scholar 

  53. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45

    CAS  PubMed  Google Scholar 

  54. Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007–1016. doi:10.1007/s00425-007-0548-5

    Article  CAS  PubMed  Google Scholar 

  55. Leung J, Bouvierdurand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1–Features of a calcium-modulated protein phosphatase. Science 264:1448–1452. doi:10.1126/science.7910981

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez PL, Benning G, Grill E (1998) ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett 421:185–190. doi:10.1016/S0014-5793(97)01558-5

    Article  CAS  PubMed  Google Scholar 

  57. Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    Article  CAS  PubMed  Google Scholar 

  58. Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  Google Scholar 

  59. Lopez-Molina L, Chua NH (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41:541–547

    CAS  PubMed  Google Scholar 

  60. Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328. doi:10.1046/j.1365-313X.2002.01430.x

    Article  CAS  PubMed  Google Scholar 

  61. Brocard-Gifford IM, Lynch TJ, Finkelstein RR (2003) Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 131:78–92. doi:10.1104/pp.011916

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fei Li (University of California, Berkeley, CA) for revising the manuscript, Dr. Aifen Zhou (University of Oklahoma, Norman, OK) for helpful suggestions and valuable discussions. We also thank Wenbiao Shen (Nanjing Agriculture University, Nanjing, China) for technical advice. This work was supported in part by National 973 Projects (no. 2004CB117206, no. 2002CB111304), National 863 Projects (no. 2006AA10Z1C1, 2007AA10Z193, no. 2006AA10A111), National Natural Science Foundation of China (no. 30490250, no. 30771362), the Specific Grant from the Ministry of Agriculture (no. 200803060), and the 111 Project from the Ministry of Education (B08025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yue Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, QL., Cui, WZ., Zhang, CH. et al. GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean (Glycine max). Mol Biol Rep 37, 685 (2010). https://doi.org/10.1007/s11033-009-9535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-009-9535-1

Keywords

Navigation