Skip to main content

Advertisement

Log in

Molecular characterization and expression analysis of a new cDNA encoding strictosidine synthase from Ophiorrhiza japonica

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A new full-length cDNA encoding strictosidine synthase (designated as OjSTR, GenBank Accession No. 1087598), which catalyzes a committed step in camptothecin biosynthetic pathway, was isolated from young leaves of Ophiorrhiza japonica for the first time. OjSTR was 1,258 bp and contained a 1,062 bp open reading frame encoding a deduced protein of 353 amino acid residues. Sequence analyses showed that OjSTR had high homology with other STRs from some TIA-producing plants. Phylogenetic tree analysis showed that OjSTR had closest relationship with STR from O. pumila. Tissue expression pattern analysis revealed that OjSTR constitutively expressed in all the tested tissues at different levels, which was high in flower, moderate in leaf and root, low in stem. Expression profiles under plant defense signals such as methyl jasmonate and salicylic acid were investigated, and the results revealed that expression of OjSTR was all induced, implying that OjSTR was high elicitor responsive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CPT:

Camptothecin

MeJA:

Methyl jasmonate

ORF:

Open reading frame

RACE:

Rapid amplification of cDNA ends

SA:

Salicylic acid

STR:

Strictosidine synthase

TIAs:

Terpenoid indole alkaloids

References

  1. Wall ME, Wani MC, Cook CE, Palmer KH (1966) Plant anti-tumor agents I. The isolation and structure of camptothecin-a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  2. Lorence L, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749. doi:10.1016/j.phytochem.2004.09.001

    Article  PubMed  CAS  Google Scholar 

  3. Gunasekera SP, Badawi MM, Cordell GA, Farnsworth NR, Chitnis M (1979) Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. J Nat Prod 42:475–477. doi:10.1021/np50005a006

    Article  PubMed  CAS  Google Scholar 

  4. Arisawa M, Gunasekera SP, Cordell GA, Farnsworth NR (1981) Plant anticancer agents XXI Constituents of Merrilliodendron megacarpum. Planta Med 43:404–407. doi:10.1055/s-2007-971533

    Article  CAS  Google Scholar 

  5. Govindachari TR, Viswanathan N (1972) Alkaloids of Mappia foetida. Phytochemistry 11:3529–3531

    Article  CAS  Google Scholar 

  6. Tafur S, Nelson JD, De Long DC, Svoboda GH (1976) Antiviral components of Ophiorrhiza mungos. Isolation of camptothecin and 10-methoxycamptothecin. Lloydia 39:261–262

    PubMed  CAS  Google Scholar 

  7. Aimi N, Nishimura M, Miwa A, Hoshino H, Sakai S, Haginiwa (1989) Pumiloside and deoxypumiloside plausible intermediates of camptothecin biosynthesis. Tetrahedron Lett 30:4991–4994

    Article  CAS  Google Scholar 

  8. Wang JC (1985) DNA topoisomerases. Annu Rev Biochem 54:665–697. doi:10.1146/annurev.bi.54.070185.003313

    Article  PubMed  CAS  Google Scholar 

  9. Kjeldsen E, Svejstrup JQ, Gromova II, Alsner J, Westergaard O (1992) Camptothecin inhibits both the cleavage and relegation reactions of eukaryotic DNA topoisomerase I. J Mol Biol 28:1025–1030. doi:10.1016/0022-2836(92)90310-G

    Article  Google Scholar 

  10. Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: historic achievements in natural products research. J Nat Prod 67:129–135. doi:10.1021/np030498t

    Article  PubMed  CAS  Google Scholar 

  11. Rothenberg ML (1997) Topoisomerase I inhibitors: review and update. Ann Oncol 8:837–855. doi:10.1023/A:1008270717294

    Article  PubMed  CAS  Google Scholar 

  12. Wall ME (1998) Camptothecin and taxol: discovery to clinic. Med Res Rev 18:299–314. doi:10.1002/(SICI)1098-1128(199809)18:5<299:AID-MED2>3.0.CO;2-O

    Article  PubMed  CAS  Google Scholar 

  13. Priel E, Showalter SD, Blair DG (1991) Inhibition of human immunodeficiency virus (HIV-1) replication in vitro by non-cytotoxic doses of camptothecin, a topoisomerase I inhibitor. AIDS Res Hum Retroviruses 7:65–72

    PubMed  CAS  Google Scholar 

  14. Li S, Adair KT (1994) Camptotheca acuminata Decaisne XI SHU (Chinese Happy tree) a promising anti-tumor and anti-viral tree for the 21st century. Tucker Center, College of Forestry, Stephen F. Austin State University Press, Nacogdoches

    Google Scholar 

  15. Lorence L, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749. doi:10.1016/j.phytochem.2004.09.001

    Article  PubMed  CAS  Google Scholar 

  16. Springob K, Saito K (2002) Metabolic engineering of plant secondary metabolism: a promising approach to the production of pharmaceuticals. Sci Cult 68:76–85

    Google Scholar 

  17. Hutchinson CR, Heckendorf AH, Straughn JL, Daddona PE, Cane DE (1979)) Biosynthesis of camptothecin. 3. Definition of strictosamide as the penultimate biosynthetic precursor assisted by 13C and 2H NMR spectroscopy. J Am Chem Soc 101:3358–3369. doi:10.1021/ja00506a037

    Article  CAS  Google Scholar 

  18. Kutchan TM, Bock A, Dittrich H (1994) Heterologous expression of the plant proteins strictosidine synthase and berberine bridge enzyme in insect cell culture. Phytochemistry 35:353–360. doi:10.1016/S0031-9422(00)94763-0

    Article  PubMed  CAS  Google Scholar 

  19. Kutchan TM (1989) Expression of enzymatically active cloned strictosidine synthase from the higher plant Rauvolfia serpentina in Escherichia coli. FEBS Lett 257:127–130. doi:10.1016/0014-5793(89)81802-2

    Article  PubMed  CAS  Google Scholar 

  20. McKnight TD, Roessner CA, Devagupta R, Scott AI, Nessler CL (1990) Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res 18:4939. doi:10.1093/nar/18.16.4939

    Article  PubMed  CAS  Google Scholar 

  21. Canel C, Lopes-Cardoso MI, Whitmer S (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419. doi:10.1007/s004250050338

    Article  PubMed  CAS  Google Scholar 

  22. Kai GY, Dai LM, Mei XY, Zheng JG, Wang W, Lu Y et al (2008) In vitro plant regeneration from leaf explants of Ophiorrhiza japonica. Biol Plant 52(3):557–560

    Article  CAS  Google Scholar 

  23. Yi BL, Peng QZ, Tian XR (2007) The research of camptothecin content in two Ophiorrhiza in XiangXi. J Changsha Univ 21(5):35–36

    Google Scholar 

  24. Kai GY, Miao ZQ, Zhang L, Zhao DL, Liao ZH, Sun XF et al (2006) Molecular cloning and expression analyses of a new gene encoding 3-hydroxy-3- methylglutaryl-CoA synthase from Taxus x media. Biol Plant 50:359–366. doi:10.1007/s10535-006-0050-0

    Article  CAS  Google Scholar 

  25. Kai GY, Zhao LX, Zhang L, Li ZG, Guo BH, Zhao DL et al (2005) Characterization and expression profile analysis of a new cDNA encoding taxadiene synthase from Taxus media. J Biochem Mol Biol 38:675–685

    Google Scholar 

  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed  CAS  Google Scholar 

  27. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 12:1244–1245. doi:10.1093/bioinformatics/17.12.1244

    Article  Google Scholar 

  28. Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44(4):395–403. doi:10.1093/pcp/pcg051

    Article  PubMed  CAS  Google Scholar 

  29. Pasquali G, Goddijn OJ, de Waal A, Verpoorte R, Schilperoort RA, Hoge JH et al (1992) Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 18(6):1121–1131. doi:10.1007/BF00047715

    Article  PubMed  CAS  Google Scholar 

  30. Wang H, Shen R, Chen M, Sun M, Liao ZH (2006) Molecular cloning and characterization of a new cDNA encoding strictosidine synthase from Rauvolfia verticillata. Acta Bo Boreal-Ocident Sin 26(5):900–905

    CAS  Google Scholar 

  31. Geourjon C, Deléage G (1995) SOPMA: significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Cabios 11:681–684

    PubMed  CAS  Google Scholar 

  32. Ma X, Panjikar S, Koepke J, Lorisand E, Sto¨ckigt J (2006) The Structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed b-propeller fold in plant proteins. Plant Cell 18:907–920. doi:10.1105/tpc.105.038018

    Article  PubMed  CAS  Google Scholar 

  33. Kai GY, Jiang JH, Zhao DL, Zhao LX, Zhang L, Li ZG et al (2006) Isolation and expression profile analysis of a new cDNA encoding 5-alpha-taxadienol-10-beta-hydroxylase from Taxus media. J Plant Biochem Biotechnol 15:1–5

    CAS  Google Scholar 

  34. Jordan MA, Thrower D, Wilsen L (1991) Mechanism of inhibitionof cell proliferation by vinca alkaloids. Cancer Res 51:2212–2222

    PubMed  CAS  Google Scholar 

  35. Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M et al (2003) Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry 62:461–470. doi:10.1016/S0031-9422(02)00543-5

    Article  PubMed  CAS  Google Scholar 

  36. Sibéril Y, Benhamron S, Memelink J, Giglioli-Guivarc’h N, Thiersault M, Boissoni B, Doireau P, Gantet P (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 45:477–488. doi:10.1023/A:1010650906695

    Article  PubMed  Google Scholar 

  37. Menke FLH, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor- inducible AP2-domain ranscription factor, ORCA2. EMBO J 18:4455–4463. doi:10.1093/emboj/18.16.4455

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Science and Technology Committee Project (06QA14038, 08391911800, 065458022, 073158202, 075405117, 05ZR14093), Shanghai Education Committee Foundation (09ZZ138, 06DZ015), Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50401) and Project from Shanghai Normal University (SK200830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyin Kai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Wang, H., Wang, W. et al. Molecular characterization and expression analysis of a new cDNA encoding strictosidine synthase from Ophiorrhiza japonica . Mol Biol Rep 36, 1845–1852 (2009). https://doi.org/10.1007/s11033-008-9389-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9389-y

Keywords

Navigation