Skip to main content

Advertisement

Log in

Structural appearance of linker histone H1/siRNA complexes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Efficient non-viral vectors for the in vivo siRNA transfer are still being searched for. Comparing the differences of the structural appearance of siRNA and pDNA one would assume differences in the assembling behaviour between these polyanions when using polycationic vectors such as nuclear proteins. The spontaneous assembly of nuclear proteins such as histone H1 (H1) with pDNA as polyanion which has intensively been investigated over the last decade, showed a particulate structure of the resulting complexes. For an efficient in vivo use small almost monomolecular structures are searched for. Using siRNA as the polyanion might enforce this structural prerequisite lacking unwanted aggregation processes, exploiting the molecular size of siRNA. We therefore investigated the structure of H1/siRNA complexes. Five commonly used methods characterizing the resulting assemblies such as retardation gels, static and dynamic light scattering, reduction of ethidium bromide fluorescence, analytical ultracentrifugation, and electron microscopy were used. From analytical ultracentrifugation we learned that under physiological salt conditions the siRNA-H1 binding was not cooperative, even though the gel analysis showed disproportionation which would be an indication for a cooperative binding mode. H1 formed very small and stable complexes with siRNA at a molar ratio of 1:1 and 1:2. In order to find out if the observed structural appearance of the H1/siRNA complexes is due to unspecific charge effects only or to special features of H1, polylysine was included in the study. Low molecular weight polylysine (K16) showed also non-cooperative binding with siRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMSO:

Dimethylsulfoxide

DSS:

Dithiobis(succinimidylsuberate)

Ethbr:

Ethidium bromide

FITC:

Fluoresceine isothiocyanate

H1:

Histone H1

K16 :

(Lysine)16

N/P-ratio:

Nitrogen/phosphate ratio

PDMDAAC:

Poly(N,N′-dimethyldiallylammonium)chloride

pDNA:

Plasmid DNA

pCMV Luc:

Plasmid luciferase carrying a cytomegalie-virus-promotor

siRNA:

Small interferring RNA

TBE:

Tris–borate–EDTA buffer

TBTU:

O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate

TCA:

Trichloroacetic acid

References

  1. Vornlocher HP (2006) Antibody-directed cell-type-specific delivery of siRNA. Trends Mol Med 12:1–3. doi:10.1016/j.molmed.2005.10.009

    Article  PubMed  CAS  Google Scholar 

  2. Valencia-Sanchez MA, Liu J, Hannon GJ et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–525. doi:10.1101/gad.1399806

    Article  PubMed  CAS  Google Scholar 

  3. Sioud M (2006) Ribozymes and siRnas: from structure to preclinical applications. Handb Exp Pharmacol 173:223–242

    Article  PubMed  CAS  Google Scholar 

  4. Harborth J, Elbashir SM, Bechert K et al (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114:4557–4565

    PubMed  CAS  Google Scholar 

  5. Hariton-Gazal E, Rosenbluh J, Graessmann A et al (2003) Direct translocation of histone molecules across cell membranes. J Cell Sci 116:4577–4586. doi:10.1242/jcs.00757

    Article  PubMed  CAS  Google Scholar 

  6. Porkka K, Laakkonen P, Hoffman JA et al (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci U S A 99:7444–7449. doi:10.1073/pnas.062189599

    Article  PubMed  CAS  Google Scholar 

  7. Balicki D, Putnam CD, Scaria PV et al (2002) Structure and function correlation in histone H2A peptide-mediated gene transfer. Proc Natl Acad Sci U S A 99:7467–7471. doi:10.1073/pnas.102168299

    Article  PubMed  CAS  Google Scholar 

  8. Puebla I, Esseghir S, Mortlock A et al (2003) A recombinant H1 histone-based system for efficient delivery of nucleic acids. J Biotechnol 105:215–226. doi:10.1016/j.jbiotec.2003.07.006

    Article  PubMed  CAS  Google Scholar 

  9. Vijayanathan V, Thomas T, Thomas TJ (2002) DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41:14085–14094. doi:10.1021/bi0203987

    Article  PubMed  CAS  Google Scholar 

  10. Böttger M, Zaitsev SV, Otto A et al (1998) Acid nuclear extracts as mediators of gene transfer and expression. Biochim Biophys Acta 1395:78–87

    PubMed  Google Scholar 

  11. Schnorrenberg G, Gerhardt H (1989) Fully-automatic simultaneous multiple peptide synthesis in micromolar scale—rapid synthesis of series of peptides for screening in biological assays. Tetrahedron 45:7759–7764. doi:10.1016/S0040-4020(01)85791-4

    Article  CAS  Google Scholar 

  12. Atheron E, Sheppard RC (1989) Solid phase peptide synthesis: a practical approach. IRL Press, Oxford, England

    Google Scholar 

  13. Haberland A, Zaitsev S, Dallüge R et al (2003) Peptide-mediated gene transfer: effect of complex size on transfection efficiency and targeting behaviour. Biologicheskie Membrany 20:278–287

    CAS  Google Scholar 

  14. Perales JC, Grossmann GA, Molas M et al (1997) Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J Biol Chem 272:7398–7407. doi:10.1074/jbc.272.11.7398

    Article  PubMed  CAS  Google Scholar 

  15. Dallüge R, Haberland A, Zaitsev S et al (2002) Characterization of structure and mechanism of transfection-active peptide-DNA complexes. Biochim Biophys Acta 1576:45–52

    PubMed  Google Scholar 

  16. Parker AL, Oupicky D, Dash PR et al (2002) Methodologies for monitoring nanoparticle formation by self-assembly of DNA with poly(l-lysine). Anal Biochem 302:75–80. doi:10.1006/abio.2001.5507

    Article  PubMed  CAS  Google Scholar 

  17. Behlke J, Ristau O, Schönfeld HJ (1997) Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. Biochemistry 36:5149–5156. doi:10.1021/bi962755h

    Article  PubMed  CAS  Google Scholar 

  18. Behlke J, Ristau O (2003) Sedimentation equilibrium: a valuable tool to study homologous and heterogeneous interactions of proteins or proteins and nucleic acids. Eur Biophys J 32:427–431. doi:10.1007/s00249-003-0318-7

    Article  PubMed  CAS  Google Scholar 

  19. Harvey AC, Downs JA (2004) What functions do linker histones provide? Mol Microbiol 53:771–775. doi:10.1111/j.1365-2958.2004.04195.x

    Article  PubMed  CAS  Google Scholar 

  20. Ramakrishnan V (1997) Histone structure and the organization of the nucleosome. Annu Rev Biophys Biomol Struct 26:83–112. doi:10.1146/annurev.biophys.26.1.83

    Article  PubMed  CAS  Google Scholar 

  21. Ellen TP, van Holde KE (2004) Linker histone interaction shows divalent character with both supercoiled and linear DNA. Biochemistry 43:7867–7872. doi:10.1021/bi0497704

    Article  PubMed  CAS  Google Scholar 

  22. Thomas JO, Rees C, Finch JT (1992) Cooperative binding of the globular domains of histones H1 and H5 to DNA. Nucleic Acids Res 20:187–194. doi:10.1093/nar/20.2.187

    Article  PubMed  CAS  Google Scholar 

  23. Clark DJ, Thomas JO (1986) Salt-dependent co-operative interaction of histone H1 with linear DNA. J Mol Biol 187:569–580. doi:10.1016/0022-2836(86)90335-9

    Article  PubMed  CAS  Google Scholar 

  24. Yoshikawa Y, Velichko YS, Ichiba Y et al (2001) Self-assembled pearling structure of long duplex DNA with histone H1. Eur J Biochem 268:2593–2599. doi:10.1046/j.1432-1327.2001.02144.x

    Article  PubMed  CAS  Google Scholar 

  25. Haberland A, Böttger M (2005) Nuclear proteins as gene-transfer vectors. Biotechnol Appl Biochem 42:97–106. doi:10.1042/BA20050063

    Article  PubMed  CAS  Google Scholar 

  26. Lennard AC, Thomas JO (1985) The arrangement of H5 molecules in extended and condensed chicken erythrocyte chromatin. EMBO J 4:3455–3462

    PubMed  CAS  Google Scholar 

  27. Harbottle RP, Cooper RG, Hart SL et al (1998) An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Hum Gene Ther 9:1037–1047. doi:10.1089/hum.1998.9.7-1037

    Article  PubMed  CAS  Google Scholar 

  28. Lane D, Prentki P, Chandler M (1992) Use of gel retardation to analyze protein–nucleic acid interactions. Microbiol Res 56:509–528

    CAS  Google Scholar 

  29. Lee LK, Siapati EK, Jenkins RG et al (2003) Biophysical characterization of an integrin-targeted non-viral vector. Med Sci Monit 9:BR54–BR61

    PubMed  CAS  Google Scholar 

  30. Wahlund P-O, Izumrudov VA, Gustavsson P-E et al (2003) Phase separations in water-salt solutions of polyelectrolyte complexes formed by RNA and polycations: comparison with DNA complexes. Macromol Biosci 3:404–411. doi:10.1002/mabi.200350010

    Article  CAS  Google Scholar 

  31. Liu G, Molas M, Grossmann GA et al (2001) Biological properties of poly-l-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem 276:34379–34387. doi:10.1074/jbc.M105250200

    Article  PubMed  CAS  Google Scholar 

  32. Haberland A, Cartier R, Heuer D et al (2005) Structural aspects of histone H1-DNA complexes and their relation to transfection efficiency. Biotechnol Appl Biochem 42:107–117. doi:10.1042/BA20040155

    Article  PubMed  CAS  Google Scholar 

  33. Son KK, Tkach D, Patel DH (2000) Zeta potential of transfection complexes formed in serum-free medium can predict in vitro gene transfer efficiency of transfection reagent. Biochim Biophys Acta 1468:11–14. doi:10.1016/S0005-2736(00)00312-6

    Article  PubMed  CAS  Google Scholar 

  34. Son KK, Tkach D, Hall KJ (2000) Efficient in vivo gene delivery by the negatively charged complexes of cationic liposomes and plasmid DNA. Biochim Biophys Acta 1468:6–10. doi:10.1016/S0005-2736(00)00311-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work of A. Haberland and W. Henke was supported by HAL Allergy, Haarlem, NL and RiNA network for RNA technologies financed by the City of Berlin, the German Federal Ministry of Education and Research and the European Regional Development Fund. Our extra special thanks go to Dr. Birgit Mazurek (director of the Molecular Biological Research Laboratory, Dept. of Otorhinolaryngology, Charité University Medicine Berlin, Germany) for useful and encouraging discussions and her general support. We are grateful to Dr. Matthias Truss (Children’s Hospital, Laboratory for Molecular Biology, Charité-CCM University Medicine Berlin, Ziegelstr. 5–9, 10098 Berlin, Germany) for supplying an enormous amount of control siRNA, enabling the physicochemical measurements. We are also grateful to Prof. Dr. J. Behlke (Max-Delbrück-Centrum for Molecular Medicine, Berlin-Buch, 13125 Berlin, Germany) who supplied the service for carrying out the experiments of analytical ultracentrifugation. The work of Dr. Waldöfner was supported by The European Regional Development Fund (ERDF)—Project NanoMed No. EFRE 20002006/2ue/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annekathrin Haberland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberland, A., Zaitsev, S., Waldöfner, N. et al. Structural appearance of linker histone H1/siRNA complexes. Mol Biol Rep 36, 1083–1093 (2009). https://doi.org/10.1007/s11033-008-9282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9282-8

Keywords

Navigation