Skip to main content
Log in

The physicochemical properties of histone H2A and modified histone H2A-TAT complexes with plasmid DNA

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Histone H2A is capable of delivering transgenic DNA into mammalian cells in vitro. Its ability to deliver DNA in vivo is unknown as yet, but the factors that affect the efficiency of in vivo delivery can be estimated during in vitro experiments. The first step is estimating the size and ζ potential of H2A–DNA complexes. Recombinant histone H2A was obtained along with its modification containing a TAT peptide, which originates from the human immunodeficiency virus TAT protein and is used to improve the efficiency of delivering macromolecules into mammalian cells. The effective diameter and ζ potential were measured for particles that form in a mixture of histone H2A with DNA and the effect of the TAT peptide on the parameters was studied. Positive ζ potentials were observed for DNA complexes with histone H2A or modified histone H2A-TAT. The effective diameter of H2A–DNA complexes was approximately 200 nm, while histone modification with the TAT peptide caused aggregation of complexes to produce large particles of approximately 1 µm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Sverdlov, Curr. Gene Ther. 11 (6), 501 (2011).

    Article  Google Scholar 

  2. C. Sheridan, Nat. Biotechnol. 29 (2), 121 (2011).

    Article  MathSciNet  Google Scholar 

  3. J. R. Mendell, K. Campbell, L. Rodino-Klapac, et al., N. Engl. J. Med. 363 (15), 1429 (2010).

    Article  Google Scholar 

  4. A. C. Nathwani, E. G. Tuddenham, S. Rangarajan, et al., N. Engl. J. Med. 365 (25), 2357 (2011).

    Article  Google Scholar 

  5. S. E. Raper, N. Chirmule, F. S. Lee, et al., Mol. Genet. Metab. 80 (1–2), 148 (2003).

    Article  Google Scholar 

  6. V. V. Solov’eva, N. V. Kudryashova, and A. A. Rizvanov, Klet. Transpl. Tkan. Inzh. 6 (3), 29 (2011).

    Google Scholar 

  7. M. Kaouass, R. Beaulieu, D. Balicki, J. Control. Release 113 (3), 245 (2006).

    Article  Google Scholar 

  8. J. D. Fritz, H. Herweijer, G. Zhang, et al., Hum. Gene Ther. 7 (12), 1395 (1996).

    Article  Google Scholar 

  9. M. Bottger, S. V. Zaitsev, A. Otto, et al., Biochim. Biophys. Acta 1395 (1), 78 (1998).

    Article  Google Scholar 

  10. D. Balicki, E. Beutler, Mol. Med. 3 (11), 782 (1997).

    Google Scholar 

  11. D. Rahmat, M. I. Khan, G. Shahnaz, et al., Biomaterials 33 (7), 2321 (2012).

    Article  Google Scholar 

  12. V. P. Torchilin, T. S. Levchenko, R. Rammohan, et al., Proc. Natl. Acad. Sci. U. S. A. 100 (4), 1972 (2003).

    Article  ADS  Google Scholar 

  13. H. Hashida, M. Miyamoto, Y. Cho, et al., Br. J. Cancer 90 (6), 1252 (2004).

    Article  Google Scholar 

  14. S. F. Ye, M. M. Tian, T. X. Wang, et al., Nanomedicine 8 (6), 833 (2012).

    Article  Google Scholar 

  15. C. He, Y. Hu, L. Yin, et al., Biomaterials 31 (13), 3657 (2010).

    Article  Google Scholar 

  16. D. Liu, A. Mori, and L. Huang, Biochim. Biophys. Acta 1104 (1), 95 (1992).

    Article  Google Scholar 

  17. S. K. Hobbs, W. L. Monsky, F. Yuan, et al., Proc. Natl. Acad. Sci. U. S. A. 95 (8), 4607 (1998).

    Article  ADS  Google Scholar 

  18. D. Oupicky, M. Ogris, K. A. Howard, et al., Mol. Ther. 5 (4), 463 (2002).

    Article  Google Scholar 

  19. K. K. Ewert, A. Zidovska, A. Ahmad, et al., Top. Curr. Chem. 296, 191 (2010).

    Article  Google Scholar 

  20. Yu. D. Nechipurenko, A. M. Wolf, and Yu. M. Yevdokimov, Biophysics (Moscow) 48 (5), 746 (2003).

    Google Scholar 

  21. D. Huang, N. Korolev, K. D. Eom, et al., Biomacromolecules 9 (1), 321 (2008).

    Article  Google Scholar 

  22. N. Korolev, N. V. Berezhnoy, K. D. Eom, et al., Nucleic Acids Res. 37 (21), 7137 (2009).

    Article  Google Scholar 

  23. M. Ogris, P. Steinlein, M. Kursa, et al., Gene Ther. 5 (10), 1425 (1998).

    Article  Google Scholar 

  24. I. A. Ignatovich, E. B. Dizhe, A. V. Pavlotskaya, et al., J. Biol. Chem. 278 (43), 42625 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vvedenskii.

Additional information

Original Russian Text © A.V. Vvedenskii, S.V. Sizova, A.I. Kuzmich, 2015, published in Biofizika, 2015, Vol. 60, No. 5, pp. 883–888.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vvedenskii, A.V., Sizova, S.V. & Kuzmich, A.I. The physicochemical properties of histone H2A and modified histone H2A-TAT complexes with plasmid DNA. BIOPHYSICS 60, 727–731 (2015). https://doi.org/10.1134/S0006350915050231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915050231

Keywords

Navigation