Skip to main content
Log in

Sedimentation equilibrium: a valuable tool to study homologous and heterogeneous interactions of proteins or proteins and nucleic acids

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We present a short overview of our experience in analyzing the affinity and stoichiometry of self-associating and heterologous interactions by using the sedimentation equilibrium technique. Data acquisition and the fitting procedure employing the computer programs that we have developed, Polymole and Virial, are utilized for obtaining reliable results under ideal as well as non-ideal conditions. Such data derived from biologically important macromolecules find utility in understanding physiological events such as cell regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Arkin M, Lear JD (2001) A new data analysis method to determine binding constants of small molecules to proteins using equilibrium analytical ultracentrifugation with absorption optics. Anal Biochem 299:98–107

    Article  CAS  PubMed  Google Scholar 

  • Bär J, Behlke J, Huse K, Schulz W, Kopperschläger G (1988) Phosphofructokinase from bakers yeast: properties of a proteolytically modified active enzyme form. Int J Biol Macromol 10:99–105

    Article  Google Scholar 

  • Behlke J, Ristau O (1997) Analysis of interacting biopolymer systems by analytical ultracentrifugation. Eur Biophys J 25:325–332

    Article  CAS  PubMed  Google Scholar 

  • Behlke J, Ristau O (2000) Analysis of protein self-association under conditions of the thermodynamic nonideality. Biophys Chem 87:1-13

    CAS  PubMed  Google Scholar 

  • Behlke J, Ristau O, Schönfeld H-J (1997) Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. Biochemistry 36:5149–5156

    Article  CAS  PubMed  Google Scholar 

  • Behlke J, Heidrich K, Naumann M, Müller EC, Otto A, Reuter R, Kriegel T (1998) Hexokinase 2 from Saccharomyces cerevisiae: regulation of oligomeric structure by in-vivo phosphorylation at serine-14. Biochemistry 37:11989–11995

    Article  CAS  PubMed  Google Scholar 

  • Behlke J, Labudde D, Ristau O (2001) Self-association studies on the EphB2 receptor SAM domain using analytical ultracentrifugation. Eur Biophys J 30:411–415

    Article  CAS  PubMed  Google Scholar 

  • Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lutsch G (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269:20780–20784

    CAS  PubMed  Google Scholar 

  • Boublik T, Nezbeda I (1986) P-V-T behaviour of hard body fluids. Theory and experiment. Collect Czech Chem Commun 51:2301–2432

    CAS  Google Scholar 

  • Casassa EF, Eisenberg H (1961) Partial specific volumes and refractive index increments in multicomponent systems. J Phys Chem 65:427–435

    CAS  Google Scholar 

  • Casassa EF, Eisenberg H (1964) Thermodynamic analysis of multicomponent solutions. Adv Protein Chem 19:287–395

    CAS  Google Scholar 

  • Golbik R, Naumann M, Otto A, Müller EC, Behlke J, Reuter R, Hübner G, Kriegel TM (2001) Regulation of phosphotransferase activity of hexokinase 2 from Sacchoromyces cerevisia by modification at serine-14. Biochemistry 40:1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Haschemeyer RH, Bowers WH (1970) Exponential analysis of concentration or concentration difference for discrete molecular weight distributions in sedimentation equilibrium. Biochemistry 9:435–445

    CAS  PubMed  Google Scholar 

  • Hill TL, Chen YD (1973) Theory of aggregation in solution. I. General equations and application to the stacking of bases, nucleotides, etc. Biopolymers 12:1285–1312

    CAS  Google Scholar 

  • Hohaus A, Person V, Behlke J, Schaper J, Morano I, Haase H (2002) The C-terminal region of ahnak provides a link between cardiac L-type Ca2+channels and the actin-based cytoskeleton. FASEB J 16:1205–1216

    Article  CAS  PubMed  Google Scholar 

  • Johnson ML, Coreira JJ, Yphantis DA, Halvorson HR (1981) Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J 36:575–588

    CAS  PubMed  Google Scholar 

  • Kisker C, Schindelin H, Alber BE, Ferry JG, Rees DC (1996) A left-handed β-helix revealed by the crystal structure of a carbonic anhydrase from the archeon Methanosarcina thermophila. EMBO J 15:2323–2330

    CAS  PubMed  Google Scholar 

  • Krafft C, Diehl A, Lättig S, Behlke J, Heinemann U, Pon CL, Gualerzi C, Welfle H (2000) Interaction of fMet-tRNAMet with the C-terminal domain of translational initiation factor IF2 from Bacillus stearothermophilus. FEBS Lett 471:128–132

    Article  CAS  PubMed  Google Scholar 

  • Laue TM, Stafford WF (1999) Modern applications of analytical ultracentrifugation. Annu Rev Biophys Biomol Struct 28:75–100

    Google Scholar 

  • Lewis MS, Shrager RI, Kim S-J (1994) Analysis of protein-nucleic acid and protein-protein interactions using multi-wavelength scans from the XL-A analytical ultracentrifuge. In: Schuster TM, Laue TM (eds) Modern analytical ultracentrifugation. Birkhauser, Boston, Mass., pp 94–115

  • McMillan WG, Mayer JE (1945) The statistical thermodynamics of multicomponent systems. J Chem Phys 13:276–305

    CAS  Google Scholar 

  • Minton AP (1990) Quantitative characterization of reversible molecular associations via analytical centrifugation. Anal Biochem190:1-6

    Google Scholar 

  • Minton AP (1994) Conservation of signal: a new algorithm for the elimination of the reference concentration as an independently variable parameter in the analysis of sedimentation equilibrium. In: Schuster TM, Laue TM (eds) Modern analytical ultracentrifugation. Birkhauser, Boston, Mass., pp 81–93

  • Minton AP (1997) Alternative strategies for the characterization of associations in multicomponent solutions via measurement of sedimentation equilibrium. Prog Colloid Polym Sci 107:11–19

    CAS  Google Scholar 

  • Philo JS (2000) Sedimentation equilibrium analysis of mixed associations using numerical constraints to impose mass or signal conservation. Methods Enzymol 321:100–120

    CAS  PubMed  Google Scholar 

  • Rivas R, Stafford W, Minton AP (1999) Characterization of heterologous protein-protein interactions using analytical ultracentrifugation. Methods 19:194–212

    Article  CAS  PubMed  Google Scholar 

  • Schade M, Behlke J, Löwenhaupt K, Herbert A, Rich A, Oschkinat H (1999) A 6 bp Z-DNA hairpin binds two Zα domains from the human RNA editing enzyme ADAR1. FEBS Lett 458:27–31

    Article  CAS  PubMed  Google Scholar 

  • Schwartz T, Behlke J, Löwenhaupt K, Heinemann U, Rich A (2001) Structure of the DLM-1:Z-DNA complex reveals common recognition features within a conversed family of Z-DNA-binding proteins. Nat Struct Biol 8:761–765

    Article  CAS  PubMed  Google Scholar 

  • Smalla M, Schmieder P, Kelly M, Ter Laak A, Krause G, Ball L, Wahl M, Bork P, Oschkinat H (1999) Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Protein Sci 8:1954–1961

    CAS  PubMed  Google Scholar 

  • Sossong TM Jr, Brigham-Burke MR, Hensley P, Pearce KH Jr (1999) Self-activation of guanosine triphosphatase activity by oligomerization of the bacterial cell division protein FtsZ. Biochemistry 38:14843–14850

    Article  CAS  PubMed  Google Scholar 

  • Steinmetzer K, Behlke J, Brantl S (1998) Plasmid pIP501 encoded transcriptional repressor CopR binds to its target DNA a dimer. J Mol Biol 283: 595–603

    Article  CAS  PubMed  Google Scholar 

  • Svedberg T, Pedersen KO (1940) Die Ultrazentrifuge. Steinkopff, Dresden

  • Tiselius A (1926) Über die berechnung thermodynamischer eigenschaften von kolloidalen lösungen mit der ultrazentrifuge. Z Physik Chem (T) 124:449–463

    Google Scholar 

  • Wills PR, Jacobsen MP, Winzor DJ (1996) Direct analysis of solute self-association by sedimentation equilibrium. Biopolymers 38:119–130

    Article  CAS  Google Scholar 

  • Winzor DJ, Jacobsen MP, Wills PR (1999) Allowance for the thermodynamic nonideality in the analysis of sedimentation equilibrium distributions reflecting complex formation between dissimilar reactants. Prog Colloid Polym Sci 113:69–75

    CAS  Google Scholar 

  • Wyman J, Gill SJ (1990) Binding and linkage. University Science Books, Mill Valley, Calif

Download references

Acknowledgements

Many of the experiments presented here were carried out in fruitful collaboration with Thomas Kriegel, Dresden; Sabine Brantl, Jena; Heinz Welfle, Berlin; Udo Heinemann, Berlin; Hartmut Oschkinat, Berlin; Alexander Rich, Cambridge, Mass.; Hannelore Haase, Berlin. We are grateful to all these colleagues and thank Howard Etlinger for critical reading the manuscript. The programs Polymole and Virial are available on request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Behlke.

Additional information

Presented at the conference for Advances in Analytical Ultracentrifugation and Hydrodynamics, 8–11 June 2002, Grenoble, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behlke, J., Ristau, O. Sedimentation equilibrium: a valuable tool to study homologous and heterogeneous interactions of proteins or proteins and nucleic acids. Eur Biophys J 32, 427–431 (2003). https://doi.org/10.1007/s00249-003-0318-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0318-7

Keywords

Navigation