Skip to main content
Log in

Isolation and characterization of GI and FKF1 homologous genes in the subtropical fruit tree Dimocarpus longan

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Longan (Dimocarpus longan Lour.) is a subtropical fruit tree of significant economic importance. Flowering is a key event in longan and other fruit trees. In this study, GIGANTEA (GI) and FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) homologs were cloned from longan and named DlGI and DlFKF1, respectively. Translated sequences of DlGI and DlFKF1 revealed a high homology to GI and FKF1 sequences from other plants. DlGI and DlFKF1 transcript levels varied seasonally in the shoots and leaves during floral bud differentiation of longan. Expression levels of DlGI and DlFKF1 in the shoot tips increased and reached a peak in November which is the time of physiological differentiation of floral buds in longan. Ectopic overexpression of DlGI and DlFKF1 in Arabidopsis resulted in early-flowering phenotypes and adventitious root formation under LD conditions. The expression levels of YUCCA 9 and PIN-FORMED 2 were found to be elevated in DlGI-overexpressing and DlFKF1-overexpressing Arabidopsis plants under LD conditions. These results suggest that both DlGI and DlFKF1 are flowering promoters and they might be involved in the regulation of physiological differentiation of floral buds, inducing floral initiation by affecting endogenous auxin synthesis and transport in longan. Our results will provide more insight into flowering regulation in longan and woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua NH, Tobin EM (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22:606–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendix C, Mendoza JM, Stanley DN, Meeley R, Harmon FG (2013) The circadian clock-associated gene gigantea1 affects maize developmental transitions. Plant Cell Environ 36:1379–1390

    Article  CAS  PubMed  Google Scholar 

  • Bi CL, Liu X, Zhang XY (2006) The function of F-box protein in plant growth and development. Hereditas 28:1337–1342

    Article  CAS  PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van OH, Van MM, Inzé D (1995) superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock MT, Tiffin P, Weinig C (2007) Sequence diversity and haplotype associations with phenotypic responses to crowding: GIGANTEA affects fruit set in Arabidopsis thaliana. Mol Ecol 16:3050–3062

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, He Q, Yang Y, Wang L, Liu Y (2003) Functional conservation of light, oxygen, or voltage domains in light sensing. Proc Natl Acad Sci U S A 100:5938–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

  • Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57:3395–3403

    Article  CAS  PubMed  Google Scholar 

  • Dalchau N, Kay SA (2011) The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci U S A 108:5104–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Rühl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    Article  CAS  PubMed  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 11:553–606

    Google Scholar 

  • Habets MEJ, Offringa R (2014) PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol 203:362–377

    Article  CAS  PubMed  Google Scholar 

  • Heller WP, Ying Z, Davenport TL, Keith LM, Matsumoto TK (2014) Identification of members of the Dimocarpus longan Flowering Locus T gene family with divergent functions in flowering. Trop Plant Biol 7:19–29

    Article  CAS  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci U S A 97:9789–9794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13:83–89

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11:550–558

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426:302–306

    Article  CAS  PubMed  Google Scholar 

  • Jia T, Wei D, Meng S, Allan AC, Zeng L (2014) Identification of regulatory genes implicated in continuous flowering of Longan (Dimocarpus longan L.) PLoS ONE 9:e114568–e114568

    Article  PubMed  PubMed Central  Google Scholar 

  • Jr CJ, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142

    Article  Google Scholar 

  • Jung JH, Seo YH, Seo PJ, Reyes JL, Ju Y, Chua NH, Park CM (2007) The GIGANTEA-regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Zhang X, Hu R, Wu F, Ma J, Meng Y, Fu YF (2013) Identification and molecular characterization of FKF1 and GI homologous genes in Soybean. PLoS ONE 8:e79036–e79036

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto TK (2006) Genes uniquely expressed in vegetative and potassium chlorate induced floral buds of Dimocarpus longan. Plant Sci 170:500–510

    Article  CAS  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101:331–340

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Hall A (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21:1722–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Xie LJ, Xu BQ, Dang JZ, Li YH, Lu ZH, Zhang SA, Yu ZY, Bai XQ, Cai ZF (2010) Study on biological characters of ‘Sijihua’ longan. Acta Hortic 863:249–258

    Article  Google Scholar 

  • Qiu JD, Wu DY, Zhang HL (2001) A study on flower differentiation of ‘Shixia’ longan (Dimocarpus longana Lour. cv. Shixia). J South China Agric Univ 22:27–30

    Google Scholar 

  • Sawa M, Kay SA (2011) GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:11698–11703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13:2659–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329

  • Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336:1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140:349–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su M (1997) Effects of endogenous hormones in bearing basal shoots of “Shuizhang” longan on floral bud differentiation. Chinese J Trop Crops 18:66–71

    Google Scholar 

  • Sukumar P, Maloney GS, Muday GK (2013) Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol 162:1392–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki S (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants, second edition. Academic Press, San Diego

  • Tseng TS, Salomé PA, McClung CR, Olszewski NE (2004) SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16:1550–1563

  • Winterhagen P, Tiyayon P, Samach A, Hegele M, Wünsche JN (2013) Isolation and characterization of FLOWERING LOCUS T subforms and APETALA1 of the subtropical fruit tree Dimocarpus longan. Plant Physiol Biochem 71:184–190

    Article  CAS  PubMed  Google Scholar 

  • Xiang YZ, Mao SL, Jia RL, Guan CM, Xian SZ (2005) The wheat TaGI1, involved in photoperiodic flowering, encodesan Arabidopsis GI ortholog. Plant Mol Biol 58:53–64

    Article  Google Scholar 

  • Xu JF, Zu N, Wen C, Zeng LH (2011) Cloning and sequence analysis of LEAFY gene promoter from longan (Dimocarpus longan L.) J Fruit Sci 4:689–693

    Google Scholar 

  • Yunde Z., Auxin Biosynthesis. (2014). The Arabidopsis Book, First published on June 13, 2014: e0173. doi: 10.1199/tab.0173

  • Zeng LH, Guan L, Wu SH (2010) LLFY, a longan LEAFY ortholog, is associated with differentiation and maintenance of inflorescence bud. Acta Hortic 863:123–128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: LZ, FH. Performed the experiments: FH, ZF. Analyzed the data: FH. Contributed reagents/materials/analysis tools: FH, ZF. Wrote the paper: LZ, FH, MMB.

Corresponding author

Correspondence to Lihui Zeng.

Electronic supplementary material

ESM 1

(DOCX 33 kb)

ESM 2

(DOCX 38 kb)

ESM 3

(DOCX 110 kb)

ESM 4

(DOCX 90 kb)

ESM 5

(DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Fu, Z., Zeng, L. et al. Isolation and characterization of GI and FKF1 homologous genes in the subtropical fruit tree Dimocarpus longan . Mol Breeding 37, 90 (2017). https://doi.org/10.1007/s11032-017-0691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0691-z

Keywords

Navigation