Skip to main content
Log in

Development of retrotransposon-based molecular markers and their application in genetic mapping in chokecherry (Prunus virginiana L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Retrotransposons are the largest group of transposable elements (TEs) that are ubiquitous and well dispersed in plant genomes. Transposition/insertion of TEs on chromosomes often generates unique repeat junctions (RJs) between TEs and their flanking sequences. Long terminal repeats (LTR) are well conserved and abundant in plant genomes, making LTR retrotransposons valuable for development of TE junction-based markers. In this study, LTR retrotransposons and their RJs were detected from chokecherry genome sequences generated by Roche 454 sequencing. A total of 1246 LTR retrotransposons were identified, and 338 polymerase chain reaction primer pairs were designed. Of those, 336 were used to amplify DNA from chokecherry and other rosaceous species. An average of 283 of 336 (84.2 %) LTR primer pairs effectively amplified DNA from chokecherries. One hundred and seventeen chokecherry LTR primers also produced amplification in other Prunus (99) or rosaceous species (19). A total of 59 of 78 polymorphic LTR markers were qualified for linkage map construction according to the segregation distortion Chi-square (χ 2) test. Forty-eight LTR markers were successfully located on a previously constructed chokecherry map. The majority of the LTR markers were mapped on LG XI of the chokecherry map. Our results suggest that LTR marker development using random genome sequences is rapid and cost-efficient. Confirmed applicability of LTR markers in map construction and genetic mapping will facilitate genetic research in chokecherry and other rosaceous species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baránek M, Meszáros M, Sochorová J, Čechová J, Raddová J (2012) Utility of retrotransposon-derived marker systems for differentiation of presumed clones of the apricot cultivar Velkopavlovická. Sci Hort 143:1–6

    Article  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen J (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Castillo A, Budak H, Martin AC, Dorado G, Borner A, Roder M, Hernandez P (2010) Interspecies and intergenus transferability of barley and wheat D-genome microsatellite markers. Ann Appl Biol 156:347–356

    Article  CAS  Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodria CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11:569–586

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Constable FE, Gibb KS (2006) Eastern peach X disease (Western X-disease phytoplasma) Updated on 10/21/2011 9:32:02 AM: PaDIL http://www.padil.gov.au

  • Du XY, Hu QN, Zhang QL, Luo Wang YB (2013) Transferability of retrotransposon primers derived from persimmon (Diospyros kaki Thunb.) across other plant species. Genet Mol Res 12:1781–1795

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien MA (1992) Retroelements in higher plants. Trends Genet 8:103–108

    Article  CAS  PubMed  Google Scholar 

  • Hackett CA, Luo ZW (2003) TetraploidMap: construction of a linkage map in autotetraploid species. J Hered 94:358–359

    Article  CAS  PubMed  Google Scholar 

  • Hackett CA, Milne I, Bradshaw JE, Luo Z (2007) TetraploidMap for Windows: linkage map construction and QTL mapping in autotetraploid species. J Hered 98:727–729

    Article  CAS  PubMed  Google Scholar 

  • Halász J, Kodad O, Hegedus A (2014) Identification of a recently active Prunus-specific non-autonomous Mutator element with considerable genome shaping force. Plant J 79:220–231

    Article  PubMed  Google Scholar 

  • Jun TH, Michel AP, Mian MAR (2011) Development of soybean aphid genomic SSR markers using next generation sequencing. Genome 54:360–367

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R (2011) The use of retrotransposon-based molecular markers to analyze genetic diversity. Ratar Povert/Field Veg Crop Res 48:261–274

    Google Scholar 

  • Kalendar R, Flavell AJ, Ellis TEN, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen J (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qu J, Yang C, Tang D, Liu J, Lan H, Rong T (2015) Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC Genom 16:601

    Article  Google Scholar 

  • Lodhi MA, Ye GN, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars, Vitis species and Ampelopsis. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Lou Q, Chen J (2007) Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 50:802–810

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  • Mnejja M, Garcia-Mas J, Audergon JM, Arús P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genomes 6:689–700

    Article  Google Scholar 

  • Park YH, Ahn SG, Choi YM, Oh HJ, Ahn DC, Kim JG, Kang JS, Choi YW, Jeong BR (2010) Rose (Rosa hybrid L.) EST-derived microsatellite markers and their transferability to strawberry (Fragaria spp.). Sci Hort 125:733–739

    Article  CAS  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localization. Mol Gen Genet 250:305–315

    CAS  PubMed  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs, 2nd edn. McMillan, New York, pp 452–481

    Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • Schulman AH, Kalendar R (2005) A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenet Genome Res 110:598–605

    Article  CAS  PubMed  Google Scholar 

  • Schulman AH, Flavell AJ, Paux E, Ellis THN (2012) The applications of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 859:115–153

    Article  CAS  PubMed  Google Scholar 

  • Senkova S, Žiarovská J, Bežo M, Štefúnová V, Ražná K (2013) Utilization of IRAP technique for plums genotypes differentiation. Biosci Res 10:1–07

    Article  Google Scholar 

  • Shen Y, Ding X, Fei W, Cai B, Gao Z, Zhang Z (2011) Analysis of genetic diversity in Japanese apricot (Prunus mume Sieb. et Zucc.) based on REMAP and IRAP molecular markers. Sci Hort 132:50–58

    Article  CAS  Google Scholar 

  • Vezzulli S, Micheletti D, Riaz S, Pindo M, Voila R, This P, Walker MA, Troggio M, Velasco R (2008) A SNP transferability survey with the genus Vitis. BMC Plant Biol 8:128. doi:10.1186/1471-2229-8-128

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Walla JA, Zhong S, Huang D, Dai W (2012) Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.). Plant Cell Rep 31:2047–2055

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Walla JA, Magnusson VA, Zhong S, Dai W (2014) Construction of a linkage map and QTL mapping for X-disease resistance in tetraploid chokecherry (Prunus virginiana L.) using SSR and AFLP markers. Mol Breed 34:143–157

    Article  CAS  Google Scholar 

  • Wanjugi H, Coleman-Derr D, Huo N, Kianian SF, Luo MC, Wu J, Anderson O, Gu YQ (2009) Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Genome 52:576–587

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wünsch A (2009) Cross-transferable polymorphic SSR loci in Prunus species. Sci Hortic 120:348–352

    Article  Google Scholar 

  • You FM, Wanjugi H, Huo N, Lazo GR, Luo MC, Anderson OD, Dvorak J, Gu YQ (2010) RJPrimers: unique transposable element insertion junction discovery and PCR primer design for marker development. Nucl Acid Res 38:313–320

    Article  Google Scholar 

  • Yu F, Wang BH, Feng SP, Wang JY, Li WG, Wu YT (2011) Development, characterization, and cross-species/genera transferability of SSR markers for rubber tree (Hevea brasiliensis). Plant Cell Rep 30:335–344

    Article  CAS  PubMed  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant science. Am J Bot 99:193–208

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Senalik D, McCown BH, Zeldin EL, Speers J, Hyman J, Bassil N, Hummer K, Simon PW, Zalapa JE (2012) Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theor Appl Genet 124:87–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. D. Huang and H. Wang for valuable suggestions and comments when we were conducting the research. This research was supported in part by McIntire-Stennis Project ND06212, USDA-CSREES-2005-35300-15457, and the Talent Foundation of Jilin Academy of Agricultural Sciences and Department of Foreign Experts Affairs Project (SH132200038), Jilin Province, P. R. China.

Author’s contribution

YL and WD conceived and designed the study. YL and RL conducted the experiments and contributed equally to the work. WD supervised the research and guided data interpretation. YL, RL, and WD wrote the paper. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 31 kb)

Supplementary material 2 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Lenz, R.R. & Dai, W. Development of retrotransposon-based molecular markers and their application in genetic mapping in chokecherry (Prunus virginiana L.). Mol Breeding 36, 109 (2016). https://doi.org/10.1007/s11032-016-0535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0535-2

Keywords

Navigation