Skip to main content

The Application of LTR Retrotransposons as Molecular Markers in Plants

  • Protocol
  • First Online:
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 859))

Abstract

Retrotransposons are a major agent of genome evolution. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. The key methods, SSAP, IRAP, REMAP, RBIP, and ISBP, all detect the sites at which the retrotransposon DNA, which is conserved between families of elements, is integrated into the genome. Marker systems exploiting these methods can be easily developed and inexpensively deployed in the absence of extensive genome sequence data. They offer access to the dynamic and polymorphic, nongenic portion of the genome and thereby complement methods, such as gene-derived SNPs, that target primarily the genic fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Botstein D, et al (1980) Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  2. Quraishi UM, et al (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484.

    PubMed  CAS  Google Scholar 

  3. Williams JG, et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535

    PubMed  CAS  Google Scholar 

  4. Zhao X, Kochert G (1993) Phylogenetic distribution and genetic mapping of a (GCG)n microsatellite from rice (Oryza sativa). Plant Mol Biol 21:607–614

    PubMed  CAS  Google Scholar 

  5. Zietkiewicz E, Rafalski A, Labuda D (1989) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Google Scholar 

  6. Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144

    PubMed  CAS  Google Scholar 

  7. van Orsouw NJ, et al (2007) Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2:e1172.

    PubMed  Google Scholar 

  8. Wenzl P, et al (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    PubMed  CAS  Google Scholar 

  9. Ding C, Jin S (2009) High-throughput methods for SNP genotyping. Methods Mol Biol 578:245–254

    PubMed  CAS  Google Scholar 

  10. Knox MR, Ellis THN (2001) Stability and Inheritance of Methylation States at PstI Sites in Pisum. Mol Gen Genet 265:497–507

    CAS  Google Scholar 

  11. Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 34:221–234

    Google Scholar 

  12. Wicker T, et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    PubMed  CAS  Google Scholar 

  13. Schulman AH, Kalendar R (2005) A movable feast: Diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetics and Genome Research 110:598–605

    PubMed  CAS  Google Scholar 

  14. Kumar A, Bennetzen J (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    PubMed  CAS  Google Scholar 

  15. Frankel AD, Young JA (1998) HIV-1: Fifteen proteins and an RNA. Annu Rev Biochem 67:1–25

    PubMed  CAS  Google Scholar 

  16. Vicient CM, Kalendar R, Schulman AH (2001a) Envelope-containing retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res 11:2041–2049

    PubMed  CAS  Google Scholar 

  17. Sandmeyer SB, Menees TM (1996) Morphogenesis at the retrotransposon-retrovirus interface: gypsy and copia families in yeast and Drosophila. Curr Top Microbiol Immunol 2124:261–296

    Google Scholar 

  18. Mills RE, et al (2007) Which transposable elements are active in the human genome? Trends Genet 23:183–191

    PubMed  CAS  Google Scholar 

  19. Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenetics and Genome Research 110:91–107

    PubMed  CAS  Google Scholar 

  20. Flavell AJ, et al (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl Acids Res 20:3639–3644

    PubMed  CAS  Google Scholar 

  21. Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705

    PubMed  CAS  Google Scholar 

  22. Voytas DF, et al (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    PubMed  CAS  Google Scholar 

  23. Heslop-Harrison JS, et al (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100:197–204

    PubMed  CAS  Google Scholar 

  24. Kumar A, et al (1997) The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica 100:205–217

    PubMed  CAS  Google Scholar 

  25. Suoniemi A, et al (1996) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol 30:1321–1329

    PubMed  CAS  Google Scholar 

  26. Hawkins JS, et al (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: Copia and LINE-like elements in Gossypium. Genome 51:11–18

    PubMed  CAS  Google Scholar 

  27. Park M, et al (2011) Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics 12:85

    PubMed  CAS  Google Scholar 

  28. Vicient CM, et al (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11: 1769–1784

    PubMed  CAS  Google Scholar 

  29. Zedek F, et al (2010) Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol 10:265

    PubMed  CAS  Google Scholar 

  30. Hawkins JS, et al (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci USA

    Google Scholar 

  31. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Google Scholar 

  32. Shirasu K, et al (2000) A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    PubMed  CAS  Google Scholar 

  33. Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    PubMed  CAS  Google Scholar 

  34. Rowold DJ, Herrara RJ (2000) Alu elements and the human genome. Genetica 108:57–72

    PubMed  CAS  Google Scholar 

  35. Shimamura M, et al (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670

    PubMed  CAS  Google Scholar 

  36. Soleimani VD, Baum BR, Johnson DA (2005) Genetic diversity among barley cultivars assessed by sequence-specific amplification polymorphism. Theor Appl Genet 110:1290–1300

    PubMed  CAS  Google Scholar 

  37. Tam SM, et al (2009) LTR-retrotransposons Tnt1 and T135 markers reveal genetic diversity and evolutionary relationships of domesticated peppers. Theor Appl Genet 119:973–989

    PubMed  CAS  Google Scholar 

  38. Kalendar R, et al (2010) iPBS: A universal method for DNA fingerprinting and ­retrotransposon isolation. Theor Appl Genet 121:1419–1430

    PubMed  CAS  Google Scholar 

  39. Kalendar R, et al (2010) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530

    PubMed  Google Scholar 

  40. Kalendar R, Schulman A (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protoc 1:2478–2484

    CAS  Google Scholar 

  41. Paux E, et al (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210

    PubMed  CAS  Google Scholar 

  42. Schulman AH, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 260:145–173

    PubMed  CAS  Google Scholar 

  43. Syed NH, Flavell AJ (2006) Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nature Protoc 1:2746–2752

    CAS  Google Scholar 

  44. Waugh R, et al (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    PubMed  CAS  Google Scholar 

  45. Ellis THN, et al (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    PubMed  CAS  Google Scholar 

  46. Itoh T, et al (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183

    PubMed  Google Scholar 

  47. Manninen OM, et al (2006) Mapping of major spot-type and net-type net-blotch resistance genes in the Ethiopian barley line CI 9819. Genome 49:1564–1571

    PubMed  CAS  Google Scholar 

  48. Kalendar R, et al (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    PubMed  CAS  Google Scholar 

  49. Yu G-X, Wise RP (2000) An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome 43:736–749

    PubMed  CAS  Google Scholar 

  50. Korswagen HC, et al (1995) Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc Natl Acad Sci USA 93:14680–14685

    Google Scholar 

  51. Van den Broeck D, et al (1998) Transposon Display identifies individual transposable elements in high copy number lines. Plant J 13:121–129

    PubMed  Google Scholar 

  52. Vogel JM, Morgante M (1992) A microsatellite-based, multiplexed genome assay. In: Plant Genome III Conference. San Diego, CA USA

    Google Scholar 

  53. Vos P, et al (1995) AFLP: A new technique for DNA fingerprinting. Nucl Acids Res 21:4407–4414

    Google Scholar 

  54. Lee D, et al (1990) A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis. Plant Mol Biol 15:707–722

    PubMed  CAS  Google Scholar 

  55. Pearce SR, et al (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19:711–717

    PubMed  CAS  Google Scholar 

  56. Vershinin AV, Ellis TH (1999) Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea. Mol Gen Genet 262:703–713

    PubMed  CAS  Google Scholar 

  57. Kalendar R, et al (1999) IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    CAS  Google Scholar 

  58. Bento M, et al (2010) Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines. Theor Appl Genet 121:489–497

    PubMed  CAS  Google Scholar 

  59. Boyko E, et al (2002) Combined mapping of Aegilops tauschii by retrotransposon, microsatellite, and gene markers. Plant Mol Biol 48:767–790

    PubMed  CAS  Google Scholar 

  60. Baumel A, et al (2002) Inter-retrotransposon amplified polymorphism (IRAP), and retotransposon-microsatellite amplified polymorphism (REMAP) in populations of the young allopolyploid species Spartina angelica Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    PubMed  CAS  Google Scholar 

  61. Bernet GP, Asins MJ (2004) Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus. Theor Appl Genet 108:121–130

    Google Scholar 

  62. Branco CJ, et al (2007) IRAP and REMAP assessments of genetic similarity in rice. J Appl Genet 48:107–113

    PubMed  Google Scholar 

  63. Breto MP, et al (2001) The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylogenet Evol 21:285–293

    PubMed  CAS  Google Scholar 

  64. Pereira HS, et al (2005) Genomic analysis of Grapevine Retrotransposon 1 (Gret 1) in Vitis vinifera. Theor Appl Genet 111:871–87895.

    PubMed  CAS  Google Scholar 

  65. Smykal P (2006) Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification. J Appl Genet 47:221–230

    PubMed  Google Scholar 

  66. Smýkal P, et al (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122: 1385–1397

    PubMed  Google Scholar 

  67. Teo CH, et al (2005) Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. J Plant Biol 48:96–105

    CAS  Google Scholar 

  68. Vicient CM, et al (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    PubMed  CAS  Google Scholar 

  69. Vukich M, et al (2009) Genetic variability in sunflower and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor Appl Genet

    Google Scholar 

  70. Kankaanpää J, Mannonen L, Schulman AH (1996) The genome sizes of Hordeum species show considerable variation. Genome 39: 730–735

    Google Scholar 

  71. Panstruga R, et al (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucl Acids Res 26:1056–1062

    PubMed  CAS  Google Scholar 

  72. Devos K (2010) Grass genome organization and evolution. Curr Opin Plant Biol 13: 139–145

    PubMed  CAS  Google Scholar 

  73. SanMiguel P, et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    PubMed  CAS  Google Scholar 

  74. McCouch SR, et al (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99

    PubMed  CAS  Google Scholar 

  75. Saghai Maroof MA, et al (1994) Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    PubMed  CAS  Google Scholar 

  76. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    PubMed  CAS  Google Scholar 

  77. Ramsay L, et al (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415–425

    PubMed  CAS  Google Scholar 

  78. Provan J, et al (1999) Copia-SSR: A simple marker technique which can be used on total genomic DNA. Genome 42:363–366

    CAS  Google Scholar 

  79. Chadha S, Gopalakrishna T (2005) Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea). Genome 48: 943–945

    PubMed  CAS  Google Scholar 

  80. Jääskeläinen M, et al (1999) Retrotransposon BARE-1: Expression of encoded proteins and formation of virus-like particles in barley cells. Plant J 20:413–422

    PubMed  Google Scholar 

  81. Manninen O, et al (2000) Application of BARE-1 retrotransposon markers to map a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334

    PubMed  CAS  Google Scholar 

  82. Tanhuanpää P, et al (2007) A major gene for grain cadmium accumulation in oat (Avena sativa L.). Genome 2007:588–594

    Google Scholar 

  83. Tenhola-Roininen T, et al (2011) A doubled haploid rye linkage map with a QTL affecting α-amylase activity. J Appl Genet doi: 10.1007/s13353-011-0029-1

  84. Kelly NJ, Palmer MT, Morrow CD (2003) Selection of retroviral reverse transcription primer is coordinated with tRNA biogenesis. J Virol 77:8695–8701

    PubMed  CAS  Google Scholar 

  85. LeGrice SFJ (2003) “In the beginning”: Initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. Biochemistry 42:14349–14355

    CAS  Google Scholar 

  86. Mak J, Kleiman L (1997) Primer tRNAs for reverse transcription. J Virol 71:8087–8095

    PubMed  CAS  Google Scholar 

  87. Marquet R, et al (1995) tRNAs as Primer of Reverse Transcriptases. Biochemie 77: 13–124

    CAS  Google Scholar 

  88. Hizi A (2008) The reverse transcriptase of the Tf1 retrotransposon has a specific novel activity for generating the RNA self-primer that is functional in cDNA synthesis. J Virol 82:10906–10910

    PubMed  CAS  Google Scholar 

  89. Kalendar R, et al (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105: 5833–5838

    PubMed  CAS  Google Scholar 

  90. Leigh F, et al (2003) Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Genet Genomics 269:464–474

    PubMed  CAS  Google Scholar 

  91. Flavell AJ, et al (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    PubMed  CAS  Google Scholar 

  92. Jing R, Bolshakov V, Flavell AJ (2007) The tagged microarray marker (TAM) method for high-throughput detection of single nucleotide and indel polymorphisms. Nature Protoc 2:168–177

    CAS  Google Scholar 

  93. Paux E, et al (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    PubMed  CAS  Google Scholar 

  94. Bartoš J, et al (2008) A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biol 8:95

    PubMed  Google Scholar 

  95. Paux E, et al (2008) A physical map of the 1Gb bread wheat chromosome 3B. Science 322:101–104

    PubMed  CAS  Google Scholar 

  96. McClelland M, Nelson M, Raschke E (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucl Acids Res 22: 3640–3659

    PubMed  CAS  Google Scholar 

  97. Flavell AJ, et al (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. Nucl Acids Res 31:e115

    PubMed  Google Scholar 

  98. Biggin MD, Gibson TJ, Hong GF (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci USA 80:3963–3965

    PubMed  CAS  Google Scholar 

  99. Cheng X, et al (2011) Reverse genetics in medicago truncatula using Tnt1 insertion mutants. Methods Mol Biol 678:179–190

    PubMed  CAS  Google Scholar 

  100. Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    PubMed  CAS  Google Scholar 

  101. Okamoto H, Hirochika H (2000) Efficient insertion mutagenesis of Arabidopsis by tissue culture-induced activation of the tobacco retrotransposon Tto1. Plant J 23:291–304

    PubMed  CAS  Google Scholar 

  102. Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago trunculata. BMC Genomics 8:427

    PubMed  Google Scholar 

  103. Chan EY (2009) Next-generation sequencing methods: impact of sequencing accuracy on SNP discovery. Methods Mol Biol 578:95–111

    PubMed  CAS  Google Scholar 

  104. Kircher M, Kelso J (2010) High-throughput DNA sequencing – concepts and limitations. BioEssays 32:524–536

    PubMed  CAS  Google Scholar 

  105. Moragues M, et al (2010) Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data. Theor Appl Genet 120:1525–153487.

    PubMed  CAS  Google Scholar 

  106. Jing R, et al (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44

    PubMed  Google Scholar 

  107. Turpeinen T, Kulmula J, Nevo E (1999) Genome size variation in Hordeum spontaneum populations. Genome 42:1094–1099

    PubMed  CAS  Google Scholar 

  108. Knox M, et al (2009) High-throughput retrotransposon-based fluorescent markers: improved information content and allele discrimination. Plant Methods 5:10

    PubMed  Google Scholar 

  109. Piffanelli P, et al (2010) Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol Biol 65:587–560

    Google Scholar 

  110. SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44

    CAS  Google Scholar 

Download references

Acknowledgments

Development of the methods described in this chapter was funded by contracts BIO-4-CT-960508, QLK5-CT-2000-01502, and FOOD-CT-2005-513959 to the Commission of the European Communities as well as by the Academy of Finland, Grant 120810, by Project Exbardiv of the ERA-NET Plant Genomics program and by the Ministry of Education of the Czech Republic project MSM2678424601. We are grateful to Ruslan Kalendar, Maggie Knox, and Steven Pearce for material contributions to the methods presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. Schulman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schulman, A.H., Flavell, A.J., Paux, E., Ellis, T.H.N. (2012). The Application of LTR Retrotransposons as Molecular Markers in Plants. In: Bigot, Y. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 859. Humana Press. https://doi.org/10.1007/978-1-61779-603-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-603-6_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-602-9

  • Online ISBN: 978-1-61779-603-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics