Skip to main content
Log in

Fine mapping of the temperature-sensitive semi-dwarf (Tssd) locus regulating the internode length in peach (Prunus persica)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

As a key component of tree architecture, plant height is an important agronomic trait in fruit trees. Reducing tree height is beneficial for increasing planting density, allowing higher yields, lowering costs and increasing the orchard’s lifespan. However, the genetic and molecular factors that regulate peach height are unknown. Here, we report a semi-dwarf peach mutant, which exhibits extremely shortened internodes at temperature below 30 °C. Genetic analysis indicated that this trait was controlled by a single dominant gene that we have named as temperature-sensitive semi-dwarf (Tssd). To map the Tssd locus, two DNA pools, each consisting of 50 mutant or wild-type siblings, were subjected to specific length amplified fragment sequencing. SLAF analysis followed by marker validation using Sanger sequencing and high-resolution melting genotyping located the Tssd gene in a region spanning approximately 750 kb between 2.35 and 3.10 Mb in scaffold 3 based on the reference peach genome sequence of ‘Lovell.’ Further SNPs were developed for fine mapping the locus, which spans an interval of 500 Kb and contains 69 predicted protein-coding gene models. The SNP markers flanking this interval can be applied in molecular identification of Tssd individuals. The result will provide information on how temperature regulates internode length in temperate fruit trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–179

    Article  CAS  PubMed  Google Scholar 

  • Adami M, Franceschi PD, Brandi F, Liverani A, Giovannini D, Rosati C, Dondini L, Tartarini S (2013) Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Mol Biol Rep 31:1166–1175

    Article  CAS  Google Scholar 

  • Aranzana MJ, Illa E, Howad W, Arús P (2012) A first insight into peach [Prunus persica (L.)Batsch] SNP variability. Tree Genet Genomes 8:1359–1369

    Article  Google Scholar 

  • Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, Salvi S (2013) Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Mol Breed 31:429–440

    Article  CAS  Google Scholar 

  • Bassi D, Dima A, Scorza R (1994) Tree structure and pruning response of six peach growth forms. J Am Soc Hortic Sci 119(3):378–382

    Google Scholar 

  • Carvalho SMP, Heuvelink E, Cascais R, Kooten OV (2002) Effect of day and night temperature on internode and stem length in chrysanthemum: is everything explained by DIF? Ann Bot 90:111–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chagné D (2015) Application of the high-resolution melting technique for gene mapping and SNP detection in plants. Plant genotyping methods in molecular biology, pp 151–159

  • Chalmers DJ, Mitchell PD, Heek L (1981) Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning. J Am Soc Hortic Sci 106:307–312

    Google Scholar 

  • Cui F, Li J, Ding AM, Zhao CK, Wang L, Wang XQ, Li SS, BaoYG Li XF, Feng DS, Kong LR, Wang HG (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122:1517–1536

    Article  PubMed  Google Scholar 

  • Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:618–630

    Article  CAS  PubMed  Google Scholar 

  • Davies RT, Goetz DH, Lasswell JE, Anderson MN, Bartel B (1999) IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11:365–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Quero-Garcia J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Drummond RSM, Janssen BJ, Luo ZW, Oplaat C, Ledger SE, Wohlers MW, Snowden KC (2015) Environmental control of branching in petunia. Plant Physiol 168:735–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duval H, Hoerter M, Polidori J, Confolent C, Masse M, Moretti A, Ghelder CV, Esmenjaud D (2014) High-resolution mapping of the RMia gene for resistance to root-knot nematodes in peach. Tree Genet Genomes 10:297–306

    Article  Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Article  Google Scholar 

  • Falchi R, Vendramin E, Zanon L, Scalabrin S, Cipriani G, Verde I, Vizzotto G, Morgante M (2013) Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. Plant J 76(2):175–187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Foster TM, Jean-Marc Celton, Chagné D, Tustin DS, Gardiner SE (2015) Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Hortic Res. doi:10.1038/hortres.2015.1

    PubMed Central  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye SQ, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108(50):20231–20235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallavotti A (2013) The role of auxin in shaping shoot architecture. J Exp Bot 63(9):2593–2608

    Article  Google Scholar 

  • Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. J Amer Soc Hort Sci 130(1):24–33

    CAS  Google Scholar 

  • Gradziel TM, Beres W (1993) Semi dwarf growth habit in clingstone peach with desirable tree and fruit qualities. Horscience 28:1045–1047

    Google Scholar 

  • Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grossman YL, DeJong TM (1998) Training and pruning system effects on vegetative growth potential, light interception, and cropping efficiency in peach trees. J Am Soc Hortic Sci 123:1058–1064

    Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forest. An architectural analysis. Springer, New York, pp 441

    Book  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus·domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208

    Article  CAS  Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19(5):408–413

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung HS, Ecker JR, Kay SA, Chory J (2012) Linking photoreceptor excitation to changes in plant architecture. Gene Dev 26:785–790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu HF, Lin T, Klein J, Wang SH, Qi JJ, Zhou Q, Sun JJ, Zhang ZH, Weng YQ, Huang SW (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Mateo-Bonmatí E, Casanova-Sáez R, Candela H, Micol JL (2014) Rapid identification of angulata leaf mutations using next-generation sequencing. Planta 240:1113–1122

    Article  PubMed  Google Scholar 

  • Monet R, Salesses G (1975) Un nouveau mutant de nanisme chez le pêcher. Ann Amelior Plantes 25:353–359

    Google Scholar 

  • Muttoni G, Foerster JM, Johnson JM, Haase NJ, Beissinger TM, Stelpflug S C, Sekhon RS, Kaeppler SM, de Leon N (2013) Phenotypic and genetic dissection of maize internode length. Plant and animal genome XXI conference, pp 11–16

  • Nozue K, Harmer SL, Maloof JN (2011) Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PIF5 as a modulator of auxin signaling in Arabidopsis. Plant Physiol 156:357–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Otto D, Petersen R, Brauksiepe B, Braun P, Schmidt ER (2014) The columnar mutation (“Co gene”) of apple (Malus × domestica) is associated with an integration of a Gypsy-like retrotransposon. Mol Breed 33:863–880

    Article  CAS  Google Scholar 

  • Petersen R, Krost C (2013) Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus × domestica). Planta 238:1–22

    Article  CAS  PubMed  Google Scholar 

  • Picañol R, Eduardo I, Aranzana MJ, Howad W, Batlle I, Iglesias I, Alonso JM, Arús P (2013) Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 190(2):279–288

    Article  Google Scholar 

  • Pirona R, Eduardo I, Pacheco I, Linge CDS, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166

    Article  PubMed Central  PubMed  Google Scholar 

  • Quarta R, Scortichini M (1985) Morphological characters and yielding efficiency of semi-dwarf peach selection. Acta Hortic 173:63–68

    Article  Google Scholar 

  • Scaglione D, Acquadro A, Portis E, Tirone M, Knapp SJ, Lanteri S (2012) RAD tag sequencing as a source of SNP markers in Cynaracardunculus L. BMC Genom 13:3

    Article  CAS  Google Scholar 

  • Scorza R, Glenn DM, Miller S, Tworkoski T, Okie WR (2006) Developing peach cultivars with novel tree growth habits. Acta Hortic 713:61–64

    Article  Google Scholar 

  • Segura V, Denancé C, Durel CE, Costes E (2007) Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome 50:159–171

    Article  CAS  PubMed  Google Scholar 

  • Segura V, Durel CE, Costes E (2009) Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genet Genomes 5:165–179

    Article  Google Scholar 

  • Shen ZJ, Confolent C, Lambert P, Jean-Luc Poëssel, Quilot-Turion B, Yu ML, Ma RJ, Pascal T (2013) Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genet Genomes 9:1435–1446

    Article  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development, 2nd edn. Cambridge University Press, New York, pp 124–147

    Book  Google Scholar 

  • Sun JQ, Qi LL, Li YA, Chu JF, Li CY (2012) PIF4–mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet. doi:10.1371/journal.pgen.1002594

    Google Scholar 

  • Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, Guan N, Ma CX, Zeng HP, Xu CH, Song J, Huang L, Wang CM, Shi JJ, Wang R, Zheng XH, Lu CY, Wang XW, Zheng HK (2013) SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE. doi:10.1371/journal.pone.0058700

    Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • The International Peach Genome Initiative, Verde I, Abbott AG, Scalabrin S, Jung S, Shu SQ, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan PF, Fabbro CD, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JionMap version 3.0: Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Wang YH, Li JY (2008) Molecular Basis of Plant Architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Niu L, Liu SE, Song YH, Zong XP (2004) ‘SD9238’ a new semi-dwarf germplasm of nectarine. J Fruit Sci 21:503–504 (in Chinese)

    Google Scholar 

  • Weibel A, Johnson RS, DeJong TM (2003) Comparative vegetative growth responses of two peach cultivars grown on size-controlling versus standard rootstocks. J Am Soc Hortic Sci 128(4):463–471

    Google Scholar 

  • Williamson JG, Coston DC (1990) Planting method and irrigation rate influence vegetative and reproductive growth of peach planted at high density. J Am Soc Hortic Sci 115(2):207–212

    Google Scholar 

  • Wolters PJ, Baldi P, Velasco R, Si Ammour A, Schouten HJ (2013) Co gene MdCo31 of the ‘Wijcik’ mutant of Malus x domestica Borkh and plants with controlled tree architecture genetically transformed by introduction of this gene. Patent

  • Yu B, Lin Z, Li H, Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Wang LH, Xin HG, Li DH, Ma CX, Ding X, Hong WG, Zhang XR (2013) Construction of a high density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (31500558, 31470679), the Agricultural Science and Technology Innovation Program (ASTIP) (CAAS-ASTIP-2016-ZFRI) and National High-tech R&D Program of China (2011AA10020606). Also we thank Nian Wang from Oilcrop Research Institute, Chinese Academy of Agricultural Sciences, for help in data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1176 kb)

Supplementary material 2 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Niu, L., Chagné, D. et al. Fine mapping of the temperature-sensitive semi-dwarf (Tssd) locus regulating the internode length in peach (Prunus persica). Mol Breeding 36, 20 (2016). https://doi.org/10.1007/s11032-016-0442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0442-6

Keywords

Navigation