Skip to main content
Log in

Development of genotyping by sequencing (GBS)- and array-derived SNP markers for stem rust resistance gene Sr42

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The stem rust fungus, particularly race TTKSK (Ug99), poses a serious threat to world wheat production. Gene Sr42 or SrCad (which could be the same gene or an allele of Sr42) is effective against race TTKSK. However, known genetic markers for Sr42 are mostly SSR markers which are generally labor intensive to use. In this study, we mapped a race TTKSK resistance gene derived from PI 595667 at the same locus as Sr42 on chromosome 6DS. Based on position, pedigree and infection-type information, we propose that this gene is SrCad (Sr42). We enriched the genetic map for the Sr42 region using genotyping by sequencing (GBS) and array-derived SNP markers. In total, 21 SNP markers were discovered, spanning a genetic distance of 27.2 cM. Nine of them are derived from GBS and twelve from the Illumina iSelect 90K SNP assay. Ten of the twenty-one SNP markers are closely linked (<2.2 cM, or co-segregating) with Sr42. We converted five of the closely linked SNP markers into uniplex KASP assays which will better facilitate marker-assisted selection. We validated the KASP assay in a doubled haploid wheat population derived from a three-way cross between accessions PI 410954, RB07, and Faller that shared an uncharacterized resistance gene mapped at approximately the same locus as PI 595667. The development of closely linked (co-segregating), codominant, sequence-based SNP assays will aid marker-assisted selection and map-based cloning of Sr42.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn SJ, Costa J, Rettig Emanuel J (1996) PicoGreen quantitation of DNA: effective evaluation of samples pre-or post-PCR. Nucleic Acids Res 24(13):2623–2625. doi:10.1093/nar/24.13.2623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson JA, Linkert GL, Busch RH, Wiersma JJ, Kolmer JA, Jin Y, Dill-Macky R, Wiersma JV, Hareland GA, McVey DV (2009) Registration of ‘RB07’ wheat. J Plant Regist 3(2):175–180. doi:10.3198/jpr2008.08.0478crc

    Article  Google Scholar 

  • Bassam BJ, Caetanoanolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196(1):80–83. doi:10.1016/0003-2697(91)90120-i

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh CR, Chao SM, Wang SC, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai GH, Pumphrey M, Tomar L, Wong DB, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110(20):8057–8062. doi:10.1073/pnas.1217133110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chapman JA, Mascher M, Buluc A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Oliker L, Schmutz J, Yelick KA, Scholz U, Waugh R, Poland JA, Muehlbauer GJ, Stein N, Rokhsar DS (2015) A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. doi:10.1186/s13059-015-0582-8

    PubMed Central  PubMed  Google Scholar 

  • Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer SP, Scagliusi SM, da Silva PR, Wietholter P, Torres GAM, Lau EY, Consoli L, Chaves ALS (2013) The importance for food security of maintaining rust resistance in wheat. Food Secur 5(2):157–176. doi:10.1007/s12571-013-0248-x

    Article  Google Scholar 

  • Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL, Peng YL, Wang BT (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93(11):1093–1101. doi:10.1094/Pdis-93-11-1093

    Article  Google Scholar 

  • Consortium TIWGS (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. doi:10.1126/science.1251788

    Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19(6):1349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4(3):250–255. doi:10.3835/plantgenome2011.08.0024

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91(1):59–87. doi:10.1007/bf00035277

    Article  Google Scholar 

  • Ghazvini H, Hiebert CW, Zegeye T, Liu S, Dilawari M, Tsilo T, Anderson JA, Rouse MN, Jin Y, Fetch T (2012) Inheritance of resistance to Ug99 stem rust in wheat cultivar Norin 40 and genetic mapping of Sr42. Theor Appl Genet 125(4):817–824. doi:10.1007/s00122-012-1874-y

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott DR (2011) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122(1):143–149. doi:10.1007/s00122-010-1430-6

    Article  PubMed  Google Scholar 

  • Hiebert CW, McCartney CA, Kassa M, You F, Fetch T, Pozniak C, Sharpe A, Fobert P, Luo M, Drorak J, Menzies J (2014) Humphreys G Fine-mapping SrCad on wheat chromosome 6DS. In: Borlaug global rust initiative technical workshop, Cd. Obregon

  • Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92(6):923–926. doi:10.1094/pdis-92-6-0923

    Article  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354. doi:10.1038/ng.548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kislev ME (1982) Stem rust of wheat 3300 years old found in Israel. Science (New York, NY) 216(4549):993–994. doi:10.1126/science.216.4549.993

    Article  CAS  Google Scholar 

  • Knott DR (1990) Near-isogenic lines of wheat carrying genes for stem rust resistance. Crop Sci 30(4):901–905

    Article  Google Scholar 

  • Knox RE, Fernandez MR, Brule-Babel AL, DePauw RM (1998) Inheritance of common bunt resistance in androgenetically derived doubled haploid and random inbred populations of wheat. Crop Sci 38(5):1119–1124

    Article  Google Scholar 

  • Kolmer JA, Garvin DF, Jin Y (2011) Expression of a thatcher wheat adult plant stem rust resistance QTL on chromosome arm 2BL is enhanced by Lr34. Crop Sci 51(2):526–533. doi:10.2135/cropsci2010.06.0381

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363. doi:10.1126/science.1166453

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114(1):21–30. doi:10.1007/s00122-006-0406-z

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181. doi:10.1016/0888-7543(87)90010-3

    Article  CAS  PubMed  Google Scholar 

  • Laroche A, Demeke T, Gaudet DA, Puchalski B, Frick M, McKenzie R (2000) Development of a PCR marker for rapid identification of the Bt-10 gene for common bunt resistance in wheat. Genome 43(2):217–223. doi:10.1139/gen-43-2-217

    Article  CAS  PubMed  Google Scholar 

  • Li HH, Vikram P, Singh RP, Kilian A, Carling J, Song J, Burgueno-Ferreira JA, Bhavani S, Huerta-Espino J, Payne T, Sehgal D, Wenzl P, Singh S (2015) A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics 16:216. doi:10.1186/s12864-015-1424-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Lillemo M, Singh RP, Huerta-Espino J, Chen XM, He ZH, Brown JKM (2007) Leaf rust resistance gene LR34 is involved in powdery mildew resistance of CIMMYT bread wheat line Saar. Wheat production in stressed environments, vol 12. Springer, Dordrecht

    Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116(8):1155–1166. doi:10.1007/s00122-008-0743-1

    Article  CAS  PubMed  Google Scholar 

  • Liu JQ, Kolmer JA (1997) Genetics of leaf rust resistance in Canadian spring wheats AC domain and AC taber. Plant Dis 81(7):757–760. doi:10.1094/pdis.1997.81.7.757

    Article  Google Scholar 

  • Lopez-Vera EE, Nelson S, Singh RP, Basnet BR, Haley SD, Bhavani S, Huerta-Espino J, Xoconostle-Cazares BG, Ruiz-Medrano R, Rouse MN, Singh S (2014) Resistance to stem rust Ug99 in six bread wheat cultivars maps to chromosome 6DS. Theor Appl Genet 127(1):231–239. doi:10.1007/s00122-013-2212-8

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9(1):e1003215. doi:10.1371/journal.pgen.1003215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111(3):496–504. doi:10.1007/s00122-005-2039-z

    Article  CAS  PubMed  Google Scholar 

  • McCallum BD, DePauw RM (2008) A review of wheat cultivars grown in the Canadian prairies. Can J Plant Sci 88(4):649–677

    Article  Google Scholar 

  • Mergoum M, Frohberg RC, Stack RW, Rasmussen JW, Friesen TL (2008) Registration of ‘Faller’ Spring Wheat. J Plant Regist 2(3):224–229. doi:10.3198/jpr2008.03.0166crc

    Article  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253. doi:10.1371/journal.pone.0032253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pretorius ZA, Bender CM, Visser B, Terefe T (2010) First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust resistance genes in South Africa. Plant Dis 94(6):784–785. doi:10.1094/pdis-94-6-0784c

    Article  Google Scholar 

  • Rouse MN, Wanyera R, Njau P, Jin Y (2011) Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Dis 95(6):762–766. doi:10.1094/pdis-12-10-0940

    Article  Google Scholar 

  • Rouse MN, Nava IC, Chao S, Anderson JA, Jin Y (2012) Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theor Appl Genet 125(5):877–885. doi:10.1007/s00122-012-1879-6

    Article  PubMed  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33(1):1–14. doi:10.1007/s11032-013-9917-x

    Article  CAS  Google Scholar 

  • Singh RP, Huerta-Espino J (2003) Effect of leaf rust resistance gene Lr34 on components of slow rusting at seven growth stages in wheat. Euphytica 129(3):371–376. doi:10.1023/a:1022216327934

    Article  CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Pfeiffer W, Figueroa-Lopez P (2004) Occurrence and impact of a new leaf rust race on durum wheat in northwestern Mexico from 2001 to 2003. Plant Dis 88(7):703–708. doi:10.1094/Pdis.2004.88.7.703

    Article  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. In: Van Alfen NK, Bruening G, Leach JE (eds) Annual review of phytopathology, vol 49. Palo Alto, pp 465–481. doi:10.1146/annurev-phyto-072910-095423

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114. doi:10.1007/s00122-004-1740-7

    Article  CAS  PubMed  Google Scholar 

  • Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tricici. United States Department of Agriculture, Agricultural Research Service

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3(5):739–744. doi:10.1111/j.1365-313X.1993.00739.x

    Article  CAS  Google Scholar 

  • Szabo L, Cuomo C, Park R (2014) Puccinia graminis. In: Dean RA, Lichens-Park A, Kole C (eds) Genomics of plant-associated fungi: monocot pathogens. Springer, Berlin, pp 177–196. doi:10.1007/978-3-662-44053-7_8

    Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing C, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is part of the Durable Rust Resistance in Wheat (DRRW) Project funded by the Bill and Melinda Gates Foundation and the UK Department for International Development. This work is also supported by the USDA-ARS National Plant Disease Recovery System and the United States Department of Agriculture, and National Research Initiative Competitive Grant no. 2011-68002-30029 (Triticeae-CAP) from the USDA National Institute of Food and Agriculture. We acknowledge the Minnesota Supercomputing Institute for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Anderson.

Additional information

Liangliang Gao and Josh Kielsmeier-Cook should be considered co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Kielsmeier-Cook, J., Bajgain, P. et al. Development of genotyping by sequencing (GBS)- and array-derived SNP markers for stem rust resistance gene Sr42 . Mol Breeding 35, 207 (2015). https://doi.org/10.1007/s11032-015-0404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0404-4

Keywords

Navigation