Skip to main content
Log in

A restriction-site-associated DNA (RAD) linkage map, comparative genomics and identification of QTL for histological fibre content coincident with those for retted bast fibre yield and its major components in jute (Corchorus olitorius L., Malvaceae s. l.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

We used RAD (restriction-site-associated DNA) sequencing to detect genome-wide SNPs and construct a dense linkage map using an intercross F2 population in jute (Corchorus olitorius). The linkage map comprising a total of 503 RAD markers in seven linkage groups spanned 358.5 cM with an average marker interval of 0.72 cM and covered 87.0 % of the genome. Genome-wide segregation distortion of the mapped loci (34.4 %) was non-random across the linkage map, with a directional bias mostly towards the female genotypes. Jute had maximum syntenic relationships with cocoa (47.5 % homology) and diploid cotton (29.2 % homology). However, synteny and collinearity were not conserved. Histological fibre content (FC; total number of fibre cell bundles in a stem cross section) was positively correlated with fibre yield (FY), plant height (PH), root weight (RW) and stem-base diameter (SBD). Broad-sense heritability estimates were high for all traits, with FC and FY showing maximum heritability (~93 %). QTL mapping based on the F2:3 phenotypes detected nine QTL across the two environments. The QTL for FC was coincident with one QTL each for FY, PH, RW and SBD on top of a single-SNP (C/T) marker at 40.2 cM on LG1, each accounting for ~7–11 % of the phenotypic variance. Two QTL linked in repulsion one each for PH and SBD, with varying degrees of overdominance, were associated with two single-SNP (C/T) markers on LG2, each accounting for ~17–18 % of the phenotypic variance. Few candidate genes were identified within the QTL regions. Our results would enable development of tools for marker-assisted selection in jute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

bfs:

Bast fibre-shy

FC:

Fibre content

FCB:

Fibre cell bundle

FY:

Fibre yield

LG:

Linkage group

PH:

Plant height

QTL:

Quantitative trait loci

RAD-seq:

Restriction-site-associated DNA sequencing

RW:

Root weight

SBD:

Stem-base diameter

SG:

Sudan Green

SNP:

Single nucleotide polymorphism

References

  • Alverson WS, Whitlock BA, Nyffeler R, Bayer C, Baum DA (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486

    Article  CAS  PubMed  Google Scholar 

  • Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108. doi:10.1038/ng.736

    Article  CAS  PubMed  Google Scholar 

  • Arunachalam V, Iyer RD (1978) A non-destructive selection criterion for fibre content in jute. III. The criterion and its prospects. Theor Appl Genet 52:129–134. doi:10.1007/bf00264746

    Article  CAS  PubMed  Google Scholar 

  • Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64:1745–1753. doi:10.1093/jxb/ert041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376. doi:10.1371/journal.pone.0003376

    Article  PubMed Central  PubMed  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genom 12:304. doi:10.1186/1471-2164-12-304

    Article  CAS  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Valè G, Volante A, Pulcini L, Ciriaci T, Acciarri N, Barbierato V, Toppino L, Rotino GL (2012) A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS One 7:e43740. doi:10.1371/journal.pone.0043740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basak SL (1993) Quantitative genetics of fibre yield and its components. In: Denton IR (ed) Review on the genetics and breeding of jute. International Jute Organization, Dhaka, pp 51–95

    Google Scholar 

  • Begum R, Zakrzewski F, Menzel G, Weber B, Alam SS, Schmidt T (2013) Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae). Ann Bot 112:123–134. doi:10.1093/aob/mct103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benor S, Fuchs J, Blattner FR (2011) Genome size variation in Corchorus olitorius (Malvaceae s. l.) and its correlation with elevation and phenotypic traits. Genome 54:575–585. doi:10.1139/g11-021

    Article  PubMed  Google Scholar 

  • Benor S, Demissew S, Hammer K, Blattner FR (2012) Genetic diversity and relationships in Corchorus olitorius (Malvaceae s. l.) inferred from molecular and morphological data. Genet Resour Crop Evol 59:1125–1146. doi:10.1007/s10722-011-9748-8

    Article  CAS  Google Scholar 

  • Bus A, Hecht J, Huettel B, Reinhardt R, Stich B (2012) High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genom 13:281. doi:10.1186/1471-2164-13-281

    Article  CAS  Google Scholar 

  • Capron A, Chang XF, Hall H, Ellis B, Beatson RP, Berleth T (2013) Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems. J Exp Bot 64:185–197. doi:10.1093/jxb/ers319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 1:171–182. doi:10.1534/g3.111.000240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen MX, Wei CH, Qi JM, Chen XB, Su JG, Li AQ, Tao AF, Wu WR (2011) Genetic linkage map construction for kenaf using SRAP, ISSR and RAPD markers. Plant Breed 130:679–687. doi:10.1111/j.1439-0523.2011.01879.x

    Article  CAS  Google Scholar 

  • Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genom 12:4. doi:10.1186/1471-2164-12-4

    Article  CAS  Google Scholar 

  • Das M, Banerjee S, Topdar N, Kundu A, Sarkar D, Sinha MK, Balyan HS, Gupta PK (2011) Development of large-scale AFLP markers in jute. J Plant Biochem Biotechnol 20:270–275. doi:10.1007/s13562-011-0058-1

    Article  Google Scholar 

  • Das M, Banerjee S, Dhariwal R, Mir RR, Vyas S, Topdar N, Kundu A, Khurana JP, Tyagi AK, Sarkar D, Sinha MK, Balyan HS, Gupta PK (2012a) Development of SSR markers and construction of a linkage map in jute. J Genet 91:21–31. doi:10.1007/s12041-012-0151-9

    Article  CAS  PubMed  Google Scholar 

  • Das M, Banerjee S, Topdar N, Kundu A, Mir RR, Sarkar D, Sinha MK, Balyan HS, Gupta PK (2012b) QTL identification for molecular breeding of fibre yield and fibre quality traits in jute. Euphytica 187:175–189. doi:10.1007/s10681-011-0603-y

    Article  Google Scholar 

  • Edwards JH (1991) The Oxford Grid. Ann Hum Genet 55:17–31. doi:10.1111/j.1469-1809.1991.tb00394.x

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fenart S, Ndong Y-P, Duarte J, Riviere N, Wilmer J, van Wuytswinkel O, Lucau A, Cariou E, Neutelings G, Gutierrez L, Chabbert B, Guillot X, Tavernier R, Hawkins S, Thomasset B (2010) Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray. BMC Genom 11:592. doi:10.1186/1471-2164-11-592

    Article  Google Scholar 

  • Fishman L, Willis JH (2005) A novel meiotic drive locus almost completely distorts segregation in Mimulus (Monkeyflower) hybrids. Genetics 169:347–353. doi:10.1534/genetics.104.032789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallais A (2009) Hétérosis et variétés hybrides en amelioration des plantes. Quæ, Versailles

    Google Scholar 

  • Gardner KM, Latta RG (2007) Shared quantitative trait loci underlying the genetic correlation between continuous traits. Mol Ecol 16:4195–4209. doi:10.1111/j.1365-294X.2007.03499.x

    Article  PubMed  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham GI, Wolff DW, Stuber CW (1997) Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci 37:1601–1610. doi:10.2135/cropsci1997.0011183X003700050033x

    Article  CAS  Google Scholar 

  • Guo L, Wang K, Chen J, Huang D, Fan Y, Zhuang J (2013) Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice (Oryza sativa L.). Crop J 1:70–76. doi:10.1016/j.cj.2013.07.008

    Article  Google Scholar 

  • Hall MC, Willis JH (2005) Transmission ratio distortion in intraspecific hybrids of Mimulus guttatus: implications for genomic divergence. Genetics 170:375–386. doi:10.1534/genetics.104.038653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hegarty M, Yadav R, Lee M, Armstead I, Sanderson R, Scollan N, Powell W, Skøt L (2013) Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). Plant Biotechnol J 11:572–581. doi:10.1111/pbi.12045

    Article  CAS  PubMed  Google Scholar 

  • Jankauskienė Z, Gruzdevienė E (2013) Physical parameters of dew retted and water retted hemp (Cannabis sativa L.) fibres. Zemdirbyste-Agriculture 100:71–80. doi:10.13080/z-a.2013.100.010

    Article  Google Scholar 

  • Jaramillo-Correa J, Verdu M, Gonzalez-Martinez S (2010) The contribution of recombination to heterozygosity differs among plant evolutionary lineages and life-forms. BMC Evol Biol 10:22. doi:10.1186/1471-2148-10-22

    Article  PubMed Central  PubMed  Google Scholar 

  • Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N (2013) A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae). BMC Genom 14:32. doi:10.1186/1471-2164-14-32

    Article  CAS  Google Scholar 

  • Knapp SJ, Bridges WC Jr (1987) Confidence interval estimators for heritability for several mating and experiment designs. Theor Appl Genet 73:759–763. doi:10.1007/bf00260787

    Article  CAS  PubMed  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194. doi:10.2135/cropsci1985.0011183X002500010046x

    Article  Google Scholar 

  • Kundu A, Sarkar D, Bhattacharjee A, Topdar N, Sinha MK, Mahapatra BS (2011) A simple ethanol wash of the tissue homogenates recovers high-quality genomic DNA from Corchorus species characterized by highly acidic and proteinaceous mucilages. Electron J Biotechnol 14:10–11. doi:10.2225/vol14-issue1-fulltext-4

    Google Scholar 

  • Kundu A, Sarkar D, Mandal NA, Sinha MK, Mahapatra BS (2012) A secondary phloic (bast) fibre-shy (bfs) mutant of dark jute (Corchorus olitorius L.) develops lignified fibre cells but is defective in cambial activity. Plant Growth Regul 67:45–55. doi:10.1007/s10725-012-9660-z

    Article  CAS  Google Scholar 

  • Kundu A, Topdar N, Sarkar D, Sinha MK, Ghosh A, Banerjee S, Das M, Balyan HS, Mahapatra BS, Gupta PK (2013) Origins of white (Corchorus capsularis L.) and dark (C. olitorius L.) jute: a reevaluation based on nuclear and chloroplast microsatellites. J Plant Biochem Biotechnol 22:372–381. doi:10.1007/s13562-012-0165-7

    Article  CAS  Google Scholar 

  • Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190:795–811. doi:10.1534/genetics.111.133447

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsumura H, Miyagi N, Taniai N, Fukushima M, Tarora K, Shudo A, Urasaki N (2014) Mapping of the gynoecy in bitter gourd (Momordica charantia) using RAD-seq analysis. PLoS One 9:e87138. doi:10.1371/journal.pone.0087138

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95:315–327. doi:10.1016/j.ygeno.2010.03.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mir RR, Rustgi S, Sharma S, Singh R, Goyal A, Kumar J, Gaur A, Tyagi AK, Khan H, Sinha MK, Balyan HS, Gupta PK (2008) A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute. Euphytica 161:413–427. doi:10.1007/s10681-007-9597-x

    Article  CAS  Google Scholar 

  • Mir RR, Banerjee S, Das M, Gupta V, Tyagi AK, Sinha MK, Balyan HS, Gupta PK (2009) Development and characterization of large-scale simple sequence repeats in jute. Crop Sci 49:1687–1694. doi:10.2135/cropsci2008.10.0599

    Article  CAS  Google Scholar 

  • Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480. doi:10.1007/s00122-011-1546-3

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One 7:e29453. doi:10.1371/journal.pone.0029453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ross AJ, Hallauer AR, Lee M (2006) Genetic analysis of traits correlated with maize ear length. Maydica 51:301–313

    Google Scholar 

  • Rowe HC, Renaut S, Guggisberg A (2011) RAD in the realm of next-generation sequencing technologies. Mol Ecol 20:3499–3502. doi:10.1111/j.1365-294X.2011.05197.x

    CAS  PubMed  Google Scholar 

  • Rowell RM, Stout HP (2007) Jute and kenaf. In: Lewin M (ed) Handbook of fibre chemistry, 3rd edn. CRC Press, Boca Raton, pp 405–452

    Google Scholar 

  • Roy A, Bandyopadhyay A, Mahapatra AK, Ghosh SK, Singh NK, Bansal KC, Koundal KR, Mohapatra T (2006) Evaluation of genetic diversity in jute (Corchorus species) using STMS, ISSR and RAPD markers. Plant Breed 125:292–297. doi:10.1111/j.1439-0523.2006.01208.x

    Article  CAS  Google Scholar 

  • Saha P, Sarkar D, Kundu A, Majumder S, Datta SK, Datta K (2014) Karyotype analysis and chromosomal evolution in Asian species of Corchorus (Malvaceae s. l.). Genet Resour Crop Evol 61:1173–1188. doi:10.1007/s10722-014-0099-0

    Article  Google Scholar 

  • Sarkar D, Kundu A, Saha A, Mondal NA, Sinha MK, Mahapatra BS (2011) First nuclear DNA amounts in diploid (2n = 2x = 14) Corchorus spp. by flow cytometry: genome sizes in the cultivated jute species (C. capsularis L. and C. olitorius L.) are ~300 % smaller than the reported estimate of 1100–1350 Mb. Caryologia 64:147–153. doi:10.1080/00087114.2002.10589776

    Article  Google Scholar 

  • Scaglione D, Acquadro A, Portis E, Tirone M, Knapp S, Lanteri S (2012) RAD tag sequencing as a source of SNP markers in Cynara cardunculus L. BMC Genom 13:3. doi:10.1186/1471-2164-13-3

    Article  CAS  Google Scholar 

  • Segonzac C, Boyer J-C, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007) Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell 19:3760–3777. doi:10.1105/tpc.106.048173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh A, Rana MK, Singh S, Kumar S, Kumar R, Singh R (2014) CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J Plant Biochem Biotechnol 23:175–183. doi:10.1007/s13562-013-0199-5

    Article  CAS  Google Scholar 

  • Spokevicius AV, Southerton SG, MacMillan CP, Qiu D, Gan S, Tibbits JFG, Moran GF, Bossinger G (2007) β-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J 51:717–726. doi:10.1111/j.1365-313X.2007.03176.x

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan MS, Iyer RD (1961) Skewed recombination in a rare interspecific jute hybrid. Nature 192:893–894. doi:10.1038/192893b0

    Article  Google Scholar 

  • Swaminathan MS, Iyer RD, Subbha K (1961) Morphology, cytology and breeding behaviour of hybrids between Corchorus olitorius and C. capsularis. Curr Sci 30:67–68

    Google Scholar 

  • Topdar N, Kundu A, Sinha MK, Sarkar D, Das M, Banerjee S, Kar CS, Satya P, Balyan HS, Mahapatra BS, Gupta PK (2013) A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.). Cytol Genet 47:129–137. doi:10.3103/s0095452713030092

    Article  Google Scholar 

  • Utz HF (2011) PLABSTAT, a computer program for statistical analysis of plant breeding experiments. University of Hohenheim, Stuttgart

    Google Scholar 

  • van den Broeck HC, Maliepaard C, Ebskamp MJM, Toonen MAJ, Koops AJ (2008) Differential expression of genes involved in C1 metabolism and lignin biosynthesis in wooden core and bast tissues of fibre hemp (Cannabis sativa L.). Plant Sci 174:205–220. doi:10.1016/j.plantsci.2007.11.008

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V., Wageningen

    Google Scholar 

  • Van Ooijen JW (2009) MapQTL® 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B. V., Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L et al (2012a) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103. doi:10.1038/ng.2371

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-Y, Hsu P-K, Tsay Y-F (2012b) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467. doi:10.1016/j.tplants.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  • Ward JA, Bhangoo J, Fernández-Fernández F, Mloore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genom 14:2. doi:10.1186/1471-2164-14-2

    Article  CAS  Google Scholar 

  • Whitlock BA, Bayer C, Baum DA (2001) Phylogenetic relationships and floral evolution of the Byttnerioideae (“Sterculiaceae” or Malvaceae s.l.) based on sequences of the chloroplast gene, ndhF. System Bot 26:420–437. doi:10.1043/0363-6445-26.2.420

    Google Scholar 

  • Yang H, Tao Y, Zheng Z, Li C, Sweetingham M, Howieson J (2012) Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genom 13:318. doi:10.1186/1471-2164-13-318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Xcelris Labs Ltd., Ahmedabad, for assistance in Illumina HiSeq 2000 sequencing, raw data processing and the related bioinformatics analyses. We thank Director, Sugarcane Breeding Institute (SBI), Coimbatore, for allowing us to advance the mapping population in the off-season nursery, Dr. N. Subramonian (SBI, Coimbatore) for extending laboratory facilities for DNA isolation and Surajeet Dey (CRIJAF, Barrackpore) for field assistance in the development and maintenance of the mapping populations. The research was funded by National Fund for Basic, Strategic and Frontier Application Research in Agriculture (NFBSFARA), Indian Council of Agricultural Research (ICAR), New Delhi (F. No. NFBSFARA/GB-2018/2011-12), and ICAR Network Project of Transgenics in Crops (ICAR-NPTC), ICAR, New Delhi (F. No. ICAR/NRCPB/NPTC-3052). Comments and suggestions on the manuscript from two anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Sarkar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Chakraborty, A., Mandal, N.A. et al. A restriction-site-associated DNA (RAD) linkage map, comparative genomics and identification of QTL for histological fibre content coincident with those for retted bast fibre yield and its major components in jute (Corchorus olitorius L., Malvaceae s. l.). Mol Breeding 35, 19 (2015). https://doi.org/10.1007/s11032-015-0249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0249-x

Keywords

Navigation