Skip to main content
Log in

A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A high-density linkage map of an intraspecific RIL population was constructed using 6187 bins to identify QTLs for fibre quality- and yield-related traits in upland cotton by whole-genome resequencing.

Abstract

Good fibre quality and high yield are important production goals in cotton (Gossypium hirsutum L.), which is a leading natural fibre crop worldwide. However, a greater understanding of the genetic variants underlying fibre quality- and yield-related traits is still required. In this study, a large-scale population including 588 F7 recombinant inbred lines, derived from an intraspecific cross between the upland cotton cv. Nongdamian13, which exhibits high quality, and Nongda601, which exhibits a high yield, was genotyped by using 232,946 polymorphic single-nucleotide polymorphisms obtained via a whole-genome resequencing strategy with 4.3-fold genome coverage. We constructed a high-density bin linkage map containing 6187 bin markers spanning 4478.98 cM with an average distance of 0.72 cM. We identified 58 individual quantitative trait loci (QTLs) and 25 QTL clusters harbouring 94 QTLs, and 119 previously undescribed QTLs controlling 13 fibre quality and yield traits across eight environments. Importantly, the QTL counts for fibre quality in the Dt subgenome were more than two times that in the At subgenome, and chromosome D02 harboured the greatest number of QTLs and clusters. Furthermore, we discovered 24 stable QTLs for fibre quality and 12 stable QTLs for yield traits. Four novel major stable QTLs related to fibre length, fibre strength and lint percentage, and seven previously unreported candidate genes with significantly differential expression between the two parents were identified and validated by RNA-seq. Our research provides valuable information for improving the fibre quality and yield in cotton breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y, Fountain JC, Choudhary D, Culbreath AK, Liu X, Huang GD, Wang XJ, Deshmukh R, Holbrook CC, Bertioli DJ, Ozias-Akins P, Jackson SA, Varshney RK, Guo BZ (2018) High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J 16:1954–1967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali I, Teng ZH, Bai YT, Yang Q, Hao YS, Hou J, Jia YB, Tian LX, Liu XY, Tan ZY, Wang WW, Kenneth K, Sharkh AYA, Liu DX, Guo K, Zhang J, Liu DJ, Zhang ZS (2018) A high density SLAF-SNP genetic map and QTL detection for fibre quality traits in Gossypium hirsutum. BMC Genomics 19:879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang LJ, Fang L, Zhu YJ, Wu HT, Zhang ZY, Liu CX, Li XH, Zhang TZ (2016) Insights into interspecific hybridization events in allotetraploid cotton formation from characterization of a gene regulating leaf shape. Genetics 204:799–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar PA, Mehboob Ur R, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diouf L, Magwanga RO, Gong WF, He SP, Pan ZE, Jia YH, Kirungu JN, Du XM (2018) QTL mapping of fiber quality and yield-related traits in an intra-specific upland cotton using genotype by sequencing (GBS). Int J Mol Sci 19:441

    PubMed Central  Google Scholar 

  • Fan LP, Wang LP, Wang XY, Zhang HY, Zhu YF, Guo JY, Gao WW, Geng HW, Chen QJ, Qu YY (2018) A high-density genetic map of extra-long staple cotton (Gossypium barbadense) constructed using genotyping-by-sequencing based single nucleotide polymorphic markers and identification of fiber traits-related QTL in a recombinant inbred line population. BMC Genomics 19:489

    PubMed  PubMed Central  Google Scholar 

  • Fang L, Wang Q, Hu Y, Jia YH, Chen JD, Liu BL, Zhang ZY, Guan XY, Chen SQ, Zhou BL, Mei GF, Sun JL, Pan ZE, He SP, Xiao SH, Shi WJ, Gong WF, Liu JG, Ma J, Cai CP, Zhu XF, Guo WZ, Du XM, Zhang TZ (2017) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1100

    CAS  PubMed  Google Scholar 

  • Ganal MW, Altmann T, Roder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    CAS  PubMed  Google Scholar 

  • Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY (2007) Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 17:422–434

    CAS  PubMed  Google Scholar 

  • Guo YP, Guo X, Wang F, Wei Z, Zhang SQ, Wang LY, Yuan YC, Zeng WG, Zhang GH, Zhang TZ, Song XL, Sun XZ (2014) Molecular tagging and marker-assisted selection of fiber quality traits using chromosome segment introgression lines (CSILs) in cotton. Euphytica 200:239–250

    Google Scholar 

  • He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX, Li W (2006) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197

    Google Scholar 

  • Hu ZY, Deng GC, Mou HP, Xu YH, Chen L, Yang JH, Zhang MF (2017) A re-sequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis melo. DNA Res 25:1–10

    PubMed Central  Google Scholar 

  • Hu Y, Chen JD, Fang L, Zhang ZY, Ma W, Niu YC, Ju LZ, Deng JQ, Zhao T, Lian JM, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han JL, Wang K, Wang Q, Wu HT, Mei GF, Zang YH, Han ZG, Xu CY, Shen WJ, Yang DF, Si ZF, Dai F, Zou LF, Huang F, Bai YL, Zhang YG, Brodt A, Ben-Hamo H, Zhu XF, Zhou BL, Guan XY, Zhu SJ, Chen XY, Zhang TZ (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748

    CAS  PubMed  Google Scholar 

  • Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, Guan JP, Fan DL, Weng QJ, Huang T, Dong GJ, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Nie XH, Shen C, You CY, Li W, Zhao WX, Zhang XL, Lin ZX (2017) Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J 15:1374–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD, Frelichowski J, Giband M, Hague S, Hinze LL, Kochan KJ, Riggs PK, Scheffler JA, Udall JA, Ulloa M, Wang SS, Zhu QH, Bag SK, Bhardwaj A, Burke JJ, Byers RL, Claverie M, Gore MA, Harker DB, Islam MS, Jenkins JN, Jones DC, Lacape JM, Llewellyn DJ, Percy RG, Pepper AE, Poland JA, Mohan Rai K, Sawant SV, Singh SK, Spriggs A, Taylor JM, Wang F, Yourstone SM, Zheng X, Lawley CT, Ganal MW, Van Deynze A, Wilson IW, Stelly DM (2015) Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 Genes Genomes Genet 5:1187–1209

    Google Scholar 

  • Jamshed M, Jia F, Gong JW, Palanga KK, Shi YZ, Li JW, Shang HH, Liu AY, Chen TT, Zhang Z, Cai J, Ge Q, Liu Z, Lu QW, Deng XY, Tan YN, Rashid H, Sarfraz Z, Hassan M, Gong WK, Yuan YL (2016) Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics 17:197

    PubMed  PubMed Central  Google Scholar 

  • Jiang JF, Wang BS, Shen Y, Wang H, Feng Q, Shi HZ (2013) The arabidopsis RNA binding protein with K homology motifs, SHINY1, interacts with the C-terminal domain phosphatase-like 1 (CPL1) to repress stress-inducible gene expression. PLoS Genet 9:e1003625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keerio AA, Shen C, Nie YC, Ahmed MM, Zhang XL, Lin ZX (2018) QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum × G tomentosum. Int J Mol Sci 19:243–261

    PubMed Central  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palai O, Georges S, Giband M, de Assuncao H, Barroso PA, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G barbadense RIL population. BMC Plant Biol 10:132

    PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XB, Cai L, Cheng NH, Liu JW (2002) Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol 130:9

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R and Genome Project Data Processing (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2089

  • Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Zhang H, Sun FM, Wang XF, Liang J, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, Yu JZ, Zhu YX, Yu SX (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530

    PubMed  Google Scholar 

  • Li XK, Wu L, Wang JH, Sun J, Xia XH, Geng X, Wang XH, Xu ZJ, Xu Q (2018) Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biol 16:102

    PubMed  PubMed Central  Google Scholar 

  • Liang QZ, Hu C, Hua H, Li ZH, Hua JP (2013) Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L). Chin Sci Bull 58:3233–3243

    CAS  Google Scholar 

  • Liu RZ, Wang BH, Guo WZ, Qin YS, Wang LG, Zhang YM, Zhang TZ (2011) Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breeding 29:297–302

    Google Scholar 

  • Lu QW, Shi YZ, Xiao XH, Li PT, Gong JW, Gong WK, Liu AY, Shang HH, Li JW, Ge Q, Song WW, Li SQ, Zhang Z, Rashid MH, Peng RH, Yuan YL, Huang JL (2017) Transcriptome analysis suggests that chromosome introgression fragments from sea island cotton (Gossypium barbadense) increase fiber strength in upland cotton (Gossypium hirsutum). G3 Genes Genomes Genet 7:3469–3479

    CAS  Google Scholar 

  • Luan M, Guo X, Zhang Y, Yao J, Chen W (2009) QTL mapping for agronomic and fibre traits using two interspecific chromosome substitution lines of Upland cotton. Plant Breeding 128:671–678

    CAS  Google Scholar 

  • Luo XB, Xu L, Wang Y, Dong JH, Chen YL, Tang MJ, Fan LX, Zhu YL, Liu LW (2019) An ultra-high density genetic map provides insights into genome synteny, recombination landscape and taproot skin color in radish (Raphanus sativus L). Plant Biotechnol J 18:274–286

    PubMed  PubMed Central  Google Scholar 

  • Ma D, Hu Y, Yang CQ, Liu BL, Fang L, Wan Q, Liang WH, Mei GF, Wang LJ, Wang HP, Ding LY, Dong CG, Pan MQ, Chen JD, Wang S, Chen SQ, Cai CP, Zhu XF, Guan XY, Zhou BL, Zhu SJ, Wang JW, Guo WZ, Chen XY, Zhang TZ (2016) Genetic basis for glandular trichome formation in cotton. Nat Commun 7:10456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma LL, Zhao YP, Wang YM, Shang LG, Hua JP (2017) QTLs analysis and validation for fiber quality traits using maternal backcross population in upland cotton. Front Plant Sci 8:2168–2184

    PubMed  PubMed Central  Google Scholar 

  • Ma ZY, He SP, Wang XF, Sun JL, Zhang Y, Zhang GY, Wu LQ, Li ZK, Liu ZH, Sun GF, Yan YY, Jia YH, Yang J, Pan ZE, Gu QS, Li XY, Sun ZW, Dai PH, Liu ZW, Gong WF, Wu JH, Wang M, Liu HW, Feng KY, Ke HF, Wang JD, Lan HY, Wang GN, Peng J, Wang N, Wang LR, Pang BY, Peng Z, Li RQ, Tian SL, Du XM (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50:803–813

    CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JL, Salem MB, Bort J, DeAmbrogio E, del Moral LF, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf) across a wide range of water availability. Genetics 178:489–511

    PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mei WQ, Qin YM, Song WQ, Li J, Zhu YX (2009) Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genomics 36:141–150

    CAS  PubMed  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 12:122–127

    Google Scholar 

  • Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396

    CAS  PubMed  Google Scholar 

  • Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu CS, Wu XL, Bai YH, Yungbluth D, Lu F, Kumpatla S, Shannon JG, Varshney RK, Nguyen HT (2018) Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol J 16:1939–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132:154–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX (2007) Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19:3692–3704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YS, Ye WX, Liu RZ, Zhang TZ, Guo WZ (2009) QTL mapping for fiber quality properties in upland cotton (Gossypium hirsutum L). Sci Agric Sin 42:4145–4244 (in Chinese)

    Google Scholar 

  • Said JI, Lin Z, Zhang X, Song M, Zhang J (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14:776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Said JI, Knapka JA, Song MZ, Zhang JF (2014) Cotton QTLdb a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G hirsutum × G barbadense populations. Mol Genet Genomics 290:1615–1625

    Google Scholar 

  • Sano H, Sata T, Nanri H, Ikeda M, Shigemats A (2002) Thioredoxin is associated with endotoxin tolerance in mice. Crit Care Med 30:190–194

    CAS  PubMed  Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280

    CAS  PubMed  Google Scholar 

  • Shang LG, Liang QZ, Wang YM, Wang XC, Wang KB, Abduweli A, Ma LL, Cai SH, Hua JP (2015) Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton. (Gossypium hirsutum L). Euphytica 205:877–888

    CAS  Google Scholar 

  • Shang L, Wang Y, Wang X, Liu F, Abduweli A, Cai S, Li Y, Ma L, Wang K, Hua J (2016a) Genetic analysis and QTL detection on fiber traits using two recombinant inbred lines and their backcross populations in upland cotton. G3 Genes Genomes Genet 6:2717–2724

    Google Scholar 

  • Shang LG, Abduweli A, Wang YM, Hua JP, Jenkins J (2016b) Genetic analysis and QTL mapping of oil content and seed index using two recombinant inbred lines and two backcross populations in Upland cotton. Plant Breeding 135:224–231

    CAS  Google Scholar 

  • Shao QS, Zhang FJ, Tang SY, Liu Y, Fang XM, Liu DX, Liu DJ, Zhang J, Teng ZH, Paterson AH, Zhang ZS (2014) Identifying QTL for fiber quality traits with three upland cotton (Gossypium hirsutum L) populations. Euphytica 198:43–58

    Google Scholar 

  • Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2006) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380

    Google Scholar 

  • Sun ZW, Wang XF, Liu ZW, Gu QS, Zhang Y, Li ZK, Ke HF, Yang J, Wu JH, Wu LQ, Zhang GY, Zhang CY, Ma ZY (2017) Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15:982–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan ZY, Fang XM, Tang SY, Zhang J, Liu DJ, Teng ZH, Li L, Ni HJ, Zheng FM, Liu DX, Zhang TF, Paterson AH, Zhang ZS (2014) Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L). Euphytica 203:615–628

    Google Scholar 

  • Tang SY, Teng ZH, Zhai TF, Fang XM, Liu F, Liu DJ, Zhang J, Liu DX, Wang SF, Zhang K, Shao QS, Tan ZY, Paterson AH, Zhang ZS (2015) Construction of genetic map and QTL analysis of fiber quality traits for Upland cotton (Gossypium hirsutum L). Euphytica 201:195–213

    CAS  Google Scholar 

  • Valverde R, Edwards L, Regan L (2008) Structure and function of KH domains. FEBS J 275:2712–2726

    CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 40: Software for the calculation of genetic linkage maps in experimental population. Kyazma B V 33:63

    Google Scholar 

  • Van Tassell CP, Smith TP, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–259

    PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 25 Raleigh: Department of statistics. North Carolina State University

  • Wang S, Chen JD, Zhang WP, Hu Y, Chang LJ, Fang L, Wang Q, Lv FN, Wu HT, Si ZF, Chen SQ, Cai CP, Zhu XF, Zhou BL, Guo WZ, Zhang TZ (2015) Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 16:18

    CAS  Google Scholar 

  • Wang MJ, Tu LL, Yuan DJ, Zhu D, Shen C, Li JY, Liu FY, Pei LL, Wang PC, Zhao GN, Ye ZX, Huang H, Yan FL, Ma YZ, Zhang L, Liu M, You JQ, Yang YC, Liu ZP, Huang F, Li BQ, Qiu P, Zhang QH, Zhu LF, Jin SX, Yang XY, Min L, Li GL, Chen LL, Zheng HK, Lindsey K, Lin ZX, Udall JA, Zhang XL (2018) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 52:224–229

    Google Scholar 

  • Wang FR, Zhang JX, Chen Y, Zhang CY, Gong JW, Song ZQ, Zhou J, Wang JJ, Zhao CJ, Jiao MJ, Liu AY, Du ZH, Yuan YL, Fan SJ, Zhang J (2019) Identification of candidate genes for key fibre-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G barbadense introgressions. Plant Biotechnol J 18(3):707–720

    PubMed  PubMed Central  Google Scholar 

  • Wen TW, Wu M, Shen C, Gao B, Zhu D, Zhang XL, You CY, Lin ZX (2018) Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum). Plant Biotechnol J 16:1654–1666

    CAS  PubMed Central  Google Scholar 

  • Wilkins TA, Rajasekaran K, Anderson DM (2010) Cotton Biotechnology. Crit Rev. Plant Sci 19:511–550

    Google Scholar 

  • Wong JH, Cai N, Balmer Y, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2004) Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry 65:1629–1640

    CAS  PubMed  Google Scholar 

  • Yang XL, Zhou XD, Wang XF, Li ZK, Zhang Y, Liu HW, Wu LQ, Zhang GY, Yan GJ, Ma ZY (2014) Mapping QTL for cotton fiber quality traits using simple sequence repeat markers, conserved intron-scanning primers, and transcript-derived fragments. Euphytica 201:215–230

    Google Scholar 

  • Yao JB, Zhang YS, Chen W, Luan MB, Feng ZD, Guo XM (2010) Tagging QTLs of yield-related traits in chromosome 22sh of allotetraploid cotton using substitution line. Cotton Sci 22:521–526 (in Chinese)

    Google Scholar 

  • Yan ZY, Jia JH, Yan XY, Shi HY, Han YZ (2017) Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence. Plant Mol Biol 95:549–564

    CAS  PubMed  Google Scholar 

  • Zhang W, Liu F, Li SH, Wang W, Wang CY, Zhang XD, Wang YH, Song GL, Wang KB (2011) QTL analysis on yield and its components in recombinant inbred lines of upland cotton. Acta Agron Sin 37:433–442

    CAS  Google Scholar 

  • Zhang JF, Percy RG, McCarty JC (2014a) Introgression genetics and breeding between Upland and Pima cotton: a review. Euphytica 198:1–12

    Google Scholar 

  • Zhang XJ, Yuan YC, Wei Z, Guo X, Guo YP, Zhang SQ, Zhao JS, Zhang GH, Song XL, Sun XZ (2014b) Molecular mapping and validation of a major QTL conferring resistance to a defoliating isolate of verticillium wilt in cotton. (Gossypium hirsutum L.). PLoS ONE 9:e96226

    PubMed  PubMed Central  Google Scholar 

  • Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride RC, Chen XY, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao LN, Liu YC, Li J, Lin Y, Hui YY, Cao ZS, Cai CP, Zhu XF, Jiang Z, Zhou BL, Guo WZ, Li RQ, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L acc TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    CAS  PubMed  Google Scholar 

  • Zhang B, Shang LG, Ruan BP, Zhang AP, Yang SL, Jiang HZ, Liu CL, Hong K, Lin H, Gao ZY, Hu J, Zeng D, Guo LB, Qian Q (2019a) Development of three sets of high-throughput genotyped rice chromosome segment substitution lines and QTL mapping for eleven traits. Rice 12:33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li JW, Jamshed M, Shi YZ, Liu AY, Gong JW, Wang SF, Zhang JH, Sun FD, Jia F, Ge Q, Fan LQ, Zhang ZB, Pan JT, Fan SM, Wang YL, Lu QW, Liu RX, Deng XY, Zou XY, Jiang X, Liu P, Li PT, Iqbal MS, Zhang CY, Zou J, Chen H, Tian Q, Jia XH, Wang BQ, Ai NJ, Feng GL, Wang YM, Hong M, Li SL, Lian WM, Wu B, Hua JP, Zhang CJ, Huang JY, Xu AX, Shang HH, Gong WK, Yuan YL (2019b) Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population. Plant Biotechnol J 18:239–253

    PubMed  PubMed Central  Google Scholar 

  • Zhu JK, Chen JD, Gao FK, Xu CY, Wu HT, Chen K, Si ZF, Yan H, Zhang TZ (2017a) Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies. J Exp Bot 68:4125–4135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Liang CZ, Meng ZG, Sun GQ, Meng ZH, Guo SD, Zhang R (2017b) CottonFGD:an integrated functional genomics database for cotton. BMC Plant Biol 17:9

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Fund of the China Agriculture Research System (CARS15-03) and the Science and Technology Support Program of Hebei Province (16226307D).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions statement

ZYM designed the research; QSG, XFW, HFK, ZWL, XL, ZWS, MZ, LTC, JY, YZ, LQW, ZKL, JHW, GNW, CSM and GYZ performed experiments; QSG, HFK and ZWL analysed data; QSG wrote the manuscript; ZYM and XFW revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xingfen Wang or Zhiying Ma.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical standards

The experiments were performed in compliance with the current laws of China.

Additional information

Communicated by Diane E. Mather.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5637 kb)

Supplementary file2 (XLSX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Q., Ke, H., Liu, Z. et al. A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton. Theor Appl Genet 133, 3395–3408 (2020). https://doi.org/10.1007/s00122-020-03676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03676-z

Navigation