Skip to main content
Log in

The APETALA1 and FRUITFUL homologs in Camellia japonica and their roles in double flower domestication

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The APETALA1/FRUITFUL (AP1/FUL) family genes encode MADS-box transcription factors, which are broadly involved in many aspects of floral development in higher plants. Gene duplication in the core eudicots has produced the euAP1 and euFUL clades. It remains unclear how the functional divergence of this gene family occurred. Camellia japonica is a famous ornamental species which belongs to the Theaceae (Ericales) group. Artificial selection for aesthetic flowers in Camellia has resulted in a remarkable diversity of floral forms, and double flower is one of the most important traits which provides a valuable resource for studying the underlying domestication mechanism. Here we isolated two homologs of the AP1/FUL family, named as CjAPL1 and CjAPL2, from C. japonica. Sequence and phylogenic analyses revealed that they were orthologs of FUL and AP1, respectively. We showed by gene expression profiling and ectopic expression in Arabidopsis that CjAPL1 and CjAPL2 potentially played different roles during floral development. Overexpression of CjAPL1/2 displayed similar phenotypes in Arabidopsis including early flowering, formation of terminal flowers, and increase in stamen and pistil numbers, but only in plants overexpressing CjAPL2 was the petal number increased. This therefore indicates that duplication of AP1- and FUL-like genes was functionally divergent in Ericales. Furthermore, higher expression levels of CjAPL1/2 were identified in four different double-flower varieties compared to wild single-flower camellias. Our results provide evidence for functional diversification of AP1-like and FUL-like genes in core eudicot species and point to their roles in double flower domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Buylla ER, Garcia-Ponce B, Garay-Arroyo A (2006) Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. J Exp Bot 57:3099–3107

    Article  CAS  PubMed  Google Scholar 

  • Benlloch R, d’Erfurth I, Ferrandiz C, Cosson V, Beltran JP, Canas LA, Kondorosi A, Madueno F, Ratet P (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol 142:972–983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S (1958) Camellias of Zhejiang Province. Zhejiang Sci. &Tech Press, Hangzhou

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J Cell Mol Biol 16:735–743

    Article  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Dennis E, Bowman JL (1993) Flower development: manipulating floral organ identity. Curr Biol 3(2):90–93

    Article  CAS  PubMed  Google Scholar 

  • Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, Boltz V, Vergne P, Bendahmane M (2010) Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses. PLoS ONE 5:e9288

    Article  PubMed Central  PubMed  Google Scholar 

  • Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant 112:95–103

    Article  CAS  PubMed  Google Scholar 

  • Fernando DD, Zhang S (2006) Constitutive expression of the SAP1 gene from willow (Salix discolor) causes early flowering in Arabidopsis thaliana. Dev Genes Evol 216:19–28

    Article  CAS  PubMed  Google Scholar 

  • Ferrandiz C (2002) Regulation of fruit dehiscence in Arabidopsis. J Exp Bot 53:2031–2038

    Article  CAS  PubMed  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    CAS  PubMed  Google Scholar 

  • Galimba KD, Tolkin TR, Sullivan AM, Melzer R, Theissen G, Di Stilio VS (2012) Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant. Proc Natl Acad Sci USA 109:E2267–E2275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao J (2005) Collected species of the genus Camellia—an illustrated outline. Zhejiang Science and Technology Publishing House, Hangzhou

    Google Scholar 

  • Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    CAS  PubMed  Google Scholar 

  • Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76:131–143

    Article  CAS  PubMed  Google Scholar 

  • Huijser P, Klein J, Lonnig WE, Meijer H, Saedler H, Sommer H (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11:1239–1249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Immink RG, Hannapel DJ, Ferrario S, Busscher M, Franken J, Lookeren Campagne MM, Angenent GC (1999) A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development 126:5117–5126

    CAS  PubMed  Google Scholar 

  • Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics 268:598–606

    CAS  PubMed  Google Scholar 

  • Irish VF (2009) Evolution of petal identity. J Exp Bot 60:2517–2527

    Article  CAS  PubMed  Google Scholar 

  • Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaakola L, Poole M, Jones MO, Kamarainen-Karppinen T, Koskimaki JJ, Hohtola A, Haggman H, Fraser PD, Manning K, King GJ, Thomson H, Seymour GB (2010) A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol 153:1619–1629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    Article  CAS  PubMed  Google Scholar 

  • Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    Article  CAS  PubMed  Google Scholar 

  • Kinjo H, Shitsukawa N, Takumi S, Murai K (2012) Diversification of three APETALA1/FRUITFULL-like genes in wheat. Mol Genet Genomics 287:283–294

    Article  CAS  PubMed  Google Scholar 

  • Lamb RS, Hill TA, Tan QK, Irish VF (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079–2086

    CAS  PubMed  Google Scholar 

  • Litt A (2007) An evaluation of A-function: evidence from the APETALA1 and APETALA2 gene lineages. Int J Plant Sci 168:73–91

    Article  CAS  Google Scholar 

  • Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43(7):715–719

    Article  CAS  PubMed  Google Scholar 

  • Malcomber ST, Kellogg EA (2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16:1692–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131

    Article  CAS  PubMed  Google Scholar 

  • Ng M, Yanofsky MF (2001) Activation of the Arabidopsis B class homeotic genes by APETALA1. Plant Cell 13:739–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pabon-Mora N, Ambrose BA, Litt A (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol 158:1685–1704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pabon-Mora N, Sharma B, Holappa LD, Kramer EM, Litt A (2013) The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development. Plant J 74:197–212

    Article  CAS  PubMed  Google Scholar 

  • Preston JC, Kellogg EA (2007) Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. Plant J 52:69–81

    Article  CAS  PubMed  Google Scholar 

  • Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van de Peer Y, Vandepoele K (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21:3718–3731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savige TJ (1993) The international register volume one. International Camellia Society. Fine Arts Press Pty Limited, Sydney

    Google Scholar 

  • Sealy JR (1958) A revision of the genus Camellia. Royal Horticultural Society

  • Shan H, Zhang N, Liu C, Xu G, Zhang J, Chen Z, Kong H (2007) Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Mol Phylogenet Evol 44:26–41

    Article  CAS  PubMed  Google Scholar 

  • Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H, Murai K (2009) A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J 58:668–681. doi:10.1111/j.1365-313X.2009.03806.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vainstein A (2002) Breeding for ornamentals: classical and molecular approaches. Springer, Berlin

    Book  Google Scholar 

  • Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y, Vandepoele K (2012) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158:590–600

    Article  PubMed Central  PubMed  Google Scholar 

  • Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K (2009) Pistillata—duplications as a mode for floral diversification in (Basal) asterids. Mol Biol Evol 26:2627–2645

    Article  CAS  PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Gao P, Liu C, Yang J, Liu Z, Luo D (2013) SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta 237:15–27

    Article  CAS  PubMed  Google Scholar 

  • Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, Depamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu GP, Li JY, Ni S, Fan ZQ, Yin HF, Li XL, Zhou XW (2011) The potential role of B-function gene involved in floral development for double flowers formation in Camellia changii Ye. Afr J Biotechnol 10:16757–16762

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No. 2012BAD01B0703). We also acknowledge International Sci. & Tech. Cooperation Program of China (2011DFA30490), Breeding New Flower Varieties Program of Zhejiang Province (2012C12909-6), the CAF Nonprofit Research Projects (RISF6141), and National Science Foundation of Guangxi Region (2012GXNSFBA053077). We thank Prof. Zhongchi Liu from the University of Maryland (College Park) for help with experimental design and analysis of data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiyuan Li or Hengfu Yin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Fan, Z., Li, X. et al. The APETALA1 and FRUITFUL homologs in Camellia japonica and their roles in double flower domestication. Mol Breeding 33, 821–834 (2014). https://doi.org/10.1007/s11032-013-9995-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9995-9

Keywords

Navigation