Skip to main content
Log in

Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Blueberry cultivars are subject to freezing damage in the winter and early spring. C-repeat binding factor (CBF) genes are transcription factors known to induce the expression of genes associated with cold acclimation and freezing tolerance. A CBF-encoding gene (BB-CBF) was isolated from the northern highbush blueberry Bluecrop (a cold-tolerant cultivar) and introduced into the southern highbush blueberry Legacy (a more cold-sensitive cultivar) to determine the effects on cold tolerance. The BB-CBF coding sequence was linked to the cauliflower mosaic virus 35S promoter and the 35S polyA terminator and was subsequently introduced into Legacy using Agrobacterium-mediated transformation of leaf explants. Fifty-seven transgenic events were obtained. Non-acclimated mature leaves, dormant flower buds, and flowers at various developmental stages from transformants and nontransgenic plants were subjected to electrolyte leakage assays over the course of 3 years, 2009–2011. Transgenic lines showed an increase in freezing tolerance in leaves and dormant buds. Expression of putative downstream components of the blueberry CBF regulon was increased in non-acclimated transgenic lines, and, in some cases, to a level similar to that of acclimated control plants. Following low temperature exposure, BB-CBF-overexpressing transgenics and controls expressed these genes at similar levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Shilperoort RA (eds) Plant molecular biology manual. Martinus Nijhoff, Dordrecht, pp A3:1–19

  • Arora R, Rowland LJ, Lehman JS, Lim CC, Panta GR, Vorsa N (2000) Genetic analysis of freezing tolerance in blueberry (Vaccinium section Cyanococcus). Theor Appl Genet 100:690–696

    Article  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  PubMed  CAS  Google Scholar 

  • Benedict C, Skinner JS, Meng R, Chang YJ, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V (2006) The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant, Cell Environ 29:1259–1272

    Article  CAS  Google Scholar 

  • Bhat SR, Srinivasan S (2002) Molecular and genetic analyses of transgenic plants: considerations and approaches. Plant Sci 163:673–681

    Article  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Dhanaraj AL, Slovin JP, Rowland LJ (2005) Isolation of a cDNA clone and characterization of expression of the highly abundant, cold acclimation-associated 14 kDa dehydrin of blueberry. Plant Sci 168:949–957

    Article  CAS  Google Scholar 

  • Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225:735–751

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation precedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ehlenfeldt MK, Rowland LJ, Arora R (2003) Bud hardiness and deacclimation in blueberry cultivars with varying species ancestry: flowering time may not be a good indicator of deacclimation. Acta Hort 626:39–44

    Google Scholar 

  • El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulieres C (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot 57:2455–2469

    Article  PubMed  Google Scholar 

  • Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82:3673–3677

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF, Goulart BL, Erb WA, Scheerens JC (1997) Blueberry hybrids with complex genetic backgrounds evaluated on mineral soils: cold hardiness as influenced by parental species and location. Acta Hort 446:389–395

    Google Scholar 

  • Hanson EJ, Berkheimer SF, Hancock JF (2007) Seasonal changes in the cold hardiness of the flower buds of highbush blueberry with varying species ancestry. J Am Pomol Soc 61:14–18

    Google Scholar 

  • Hicklenton PR, Reekie JYC, MacKenzie K, Ryan D, Eaton LJ, Havard P (2002) Freeze damage and frost tolerance thresholds for flowers of the lowbush blueberry (Vaccinium angustifolium Ait). Acta Hort 574:193–201

    Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T (2004) Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J Plant Physiol 161:1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Levi A, Panta GR, Parmentier CM, Muthalif MM, Arora R, Shanker S, Rowland LJ (1999) Complementary DNA cloning, sequencing and expression of an unusual dehydrin from blueberry floral buds. Physiol Plant 107:98–109

    Article  CAS  Google Scholar 

  • Lin W, Pliszka K (2003) Comparison of spring frost tolerance among different highbush blueberry (Vaccinium corymbosum L.) cultivars. Acta Hort 626:337–341

    Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • Muthalif MM, Rowland LJ (1994) Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus). Plant Physiol 104:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Naik D, Dhanaraj AL, Arora R, Rowland LJ (2007) Identification of genes associated with cold acclimation in blueberry (Vaccinium corymbosum L.) using a subtractive hybridization approach. Plant Sci 173:213–222

    Article  CAS  Google Scholar 

  • Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63

    Article  PubMed  CAS  Google Scholar 

  • Norvell DJ, Moore JN (1982) An evaluation of chilling models for estimating rest requirements of highbush blueberries (Vaccinium corymbosum L). J Am Soc Hort Sci 107:54–56

    Google Scholar 

  • Owens CL, Thomashow MF, Hancock JF, Iezzoni AF (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J Am Soc Hort Sci 127:489–494

    CAS  Google Scholar 

  • Pino MT, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen TH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant, Cell Environ 31:393–406

    Article  CAS  Google Scholar 

  • Polashock JJ, Arora R, Peng Y, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hort Sci 135:40–48

    Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamagushi-Shinozaki KY (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  PubMed  CAS  Google Scholar 

  • Serres R, McCown B, Zeldin E (1997) Detectable β-glucuronidase activity in transgenic cranberry is affected by endogenous inhibitors and plant development. Plant Cell Rep 16:641–646

    CAS  Google Scholar 

  • Siddiqua M, Nassuth A (2011) Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant, Cell Environ 34:1345–1359

    Article  CAS  Google Scholar 

  • Song G-Q, Sink KC (2004) Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Rep 23:475–484

    Article  PubMed  CAS  Google Scholar 

  • Song G-Q, Sink KC (2006) Agrobacterium-mediated transformation of highbush blueberry (Vaccinium corymbosum L.) cultivars. In: Wang K (ed) Agrobacterium protocols: methods in molecular biology 344, 2nd edn. Humana Press, Totowa, pp 263–272

    Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Takuhara Y, Kobayashi M, Suzuki S (2011) Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. J Plant Physiol 168:967–975

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  PubMed  CAS  Google Scholar 

  • Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10:105–124. doi:10.1111/j.1467-7652.2011.00648.x

    Article  PubMed  CAS  Google Scholar 

  • USDA-ERS (2010) U.S. Blueberry Industry Dataset http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1765. Accessed 8 June 2011

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  PubMed  CAS  Google Scholar 

  • Walworth AE, Warner RM (2009) Differential cold acclimation ability of Petunia spp. HortScience 44:1219–1222

    Google Scholar 

  • Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233:971–983

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant, Cell Environ 29:1410–1421

    Article  CAS  Google Scholar 

  • Xiao H, Tattersall EA, Siddiqua MK, Cramer GR, Nassuth A (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant, Cell Environ 31:1–10

    CAS  Google Scholar 

  • Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C, Liu Y, Zong JM, Li HY (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Fowler SG, Cheng HM, Lou YG, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael F. Thomashow for allowing us to use his laboratory facility for freezing tests. We also thank Michael Leasia for assisting with the freezing tests. This research was supported in part by a specific cooperative agreement between the USDA/ARS and MSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-qing Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walworth, A.E., Rowland, L.J., Polashock, J.J. et al. Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Mol Breeding 30, 1313–1323 (2012). https://doi.org/10.1007/s11032-012-9718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9718-7

Keywords

Navigation